Finite element method for two-dimensional space-fractional advection-dispersion equations

被引:67
|
作者
Zhao, Yanmin [1 ]
Bu, Weiping [2 ]
Huang, Jianfei [3 ]
Liu, Da-Yan [4 ]
Tang, Yifa [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[4] Univ Orleans, INSA, Ctr Val Loire, PRISME EA 4229, Bourges, France
基金
中国国家自然科学基金;
关键词
Space-fractional advection-dispersion equation; Backward Euler scheme; Crank-Nicolson-Galerkin scheme; Finite element method; Optimal error estimate; DIFFERENCE APPROXIMATIONS; ADOMIAN DECOMPOSITION; NUMERICAL-METHOD; SPECTRAL METHOD; DIFFUSION;
D O I
10.1016/j.amc.2015.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The backward Euler and Crank-Nicolson-Galerkin fully-discrete approximate schemes for two-dimensional space-fractional advection-dispersion equations are established. Firstly, we prove that the corresponding variational problem has a unique solution, and the proposed fully-discrete schemes are unconditionally stable, whose solutions are all unique. Secondly, the optimal error estimates are derived by use of properties of projection operator and fractional derivatives. Finally, numerical examples demonstrate effectiveness of numerical schemes and confirm the theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
  • [41] A stable explicitly solvable numerical method for the Riesz fractional advection-dispersion equations
    Zhang, Jingyuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 209 - 227
  • [42] MODULATING FUNCTIONS BASED ALGORITHM FOR THE ESTIMATION OF THE COEFFICIENTS AND DIFFERENTIATION ORDER FOR A SPACE-FRACTIONAL ADVECTION-DISPERSION EQUATION
    Aldoghaither, Abeer
    Liu, Da-Yan
    Laleg-Kirati, Taous-Meriem
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2813 - A2839
  • [43] Wavelet based multiscale scheme for two-dimensional advection-dispersion equation
    Gaur, Shikha
    Singh, L. P.
    Singh, Vivek
    Singh, P. K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4023 - 4034
  • [44] An advanced numerical modeling for Riesz space fractional advection-dispersion equations by a meshfree approach
    Yuan, Z. B.
    Nie, Y. F.
    Liu, F.
    Turner, I.
    Zhang, G. Y.
    Gu, Y. T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7816 - 7829
  • [45] Adaptive Moving Mesh Finite Element Method for Space Fractional Advection Dispersion Equation
    Zhou, Zhiqiang
    Wu, Hongying
    [J]. PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 4654 - 4657
  • [46] Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations
    Moghaderi, Hamid
    Dehghan, Mehdi
    Donatelli, Marco
    Mazza, Mariarosa
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 992 - 1011
  • [47] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [48] Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations
    Du, Ning
    Guo, Xu
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
  • [49] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Noghrei, Nafiseh
    Kerayechian, Asghar
    Soheili, Ali R.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (01) : 87 - 96
  • [50] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Nafiseh Noghrei
    Asghar Kerayechian
    Ali R. Soheili
    [J]. Mathematical Sciences, 2022, 16 : 87 - 96