Finite element method for two-dimensional space-fractional advection-dispersion equations

被引:67
|
作者
Zhao, Yanmin [1 ]
Bu, Weiping [2 ]
Huang, Jianfei [3 ]
Liu, Da-Yan [4 ]
Tang, Yifa [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[4] Univ Orleans, INSA, Ctr Val Loire, PRISME EA 4229, Bourges, France
基金
中国国家自然科学基金;
关键词
Space-fractional advection-dispersion equation; Backward Euler scheme; Crank-Nicolson-Galerkin scheme; Finite element method; Optimal error estimate; DIFFERENCE APPROXIMATIONS; ADOMIAN DECOMPOSITION; NUMERICAL-METHOD; SPECTRAL METHOD; DIFFUSION;
D O I
10.1016/j.amc.2015.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The backward Euler and Crank-Nicolson-Galerkin fully-discrete approximate schemes for two-dimensional space-fractional advection-dispersion equations are established. Firstly, we prove that the corresponding variational problem has a unique solution, and the proposed fully-discrete schemes are unconditionally stable, whose solutions are all unique. Secondly, the optimal error estimates are derived by use of properties of projection operator and fractional derivatives. Finally, numerical examples demonstrate effectiveness of numerical schemes and confirm the theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
  • [21] FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL LINEAR ADVECTION EQUATIONS BASED ON SPLINE METHOD
    Qu, Kai
    Dong, Qi
    Li, Chanjie
    Zhang, Feiyu
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2471 - 2485
  • [22] ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
    Chen S.
    Liu F.
    [J]. Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 295 - 311
  • [23] A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
    Hejazi, Hala
    Moroney, Timothy
    Liu, Fawang
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1275 - 1283
  • [24] A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations
    Yang, Qianqian
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3755 - 3762
  • [25] New results on fractional advection-dispersion equations
    Qiao, Yan
    Chen, Fangqi
    An, Yukun
    Lu, Tao
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [26] Multiscaling fractional advection-dispersion equations and their solutions
    Schumer, R
    Benson, DA
    Meerschaert, MM
    Baeumer, B
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (01)
  • [27] A FAST FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DISPERSION EQUATIONS ON BOUNDED DOMAINS IN R2
    Du, Ning
    Wang, Hong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1614 - A1635
  • [28] An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations
    Ran, Yu-Hong
    Wu, Qian-Qian
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [29] Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations
    Bu, Weiping
    Tang, Yifa
    Wu, Yingchuan
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 264 - 279
  • [30] Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations
    Jin, Xiao-Qing
    Lin, Fu-Rong
    Zhao, Zhi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (02) : 469 - 488