Finite element method for two-dimensional space-fractional advection-dispersion equations

被引:67
|
作者
Zhao, Yanmin [1 ]
Bu, Weiping [2 ]
Huang, Jianfei [3 ]
Liu, Da-Yan [4 ]
Tang, Yifa [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[4] Univ Orleans, INSA, Ctr Val Loire, PRISME EA 4229, Bourges, France
基金
中国国家自然科学基金;
关键词
Space-fractional advection-dispersion equation; Backward Euler scheme; Crank-Nicolson-Galerkin scheme; Finite element method; Optimal error estimate; DIFFERENCE APPROXIMATIONS; ADOMIAN DECOMPOSITION; NUMERICAL-METHOD; SPECTRAL METHOD; DIFFUSION;
D O I
10.1016/j.amc.2015.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The backward Euler and Crank-Nicolson-Galerkin fully-discrete approximate schemes for two-dimensional space-fractional advection-dispersion equations are established. Firstly, we prove that the corresponding variational problem has a unique solution, and the proposed fully-discrete schemes are unconditionally stable, whose solutions are all unique. Secondly, the optimal error estimates are derived by use of properties of projection operator and fractional derivatives. Finally, numerical examples demonstrate effectiveness of numerical schemes and confirm the theoretical analysis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
  • [1] A Comparative Study of Finite Element and Finite Difference Methods for Two-Dimensional Space-Fractional Advection-Dispersion Equation
    Pang, Guofei
    Chen, Wen
    Sze, Kam Yim
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 166 - 186
  • [2] Space-fractional advection-dispersion equations by the Kansa method
    Pang, Guofei
    Chen, Wen
    Fu, Zhuojia
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 280 - 296
  • [3] Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection-dispersion equations
    Saffarian, Marziyeh
    Mohebbi, Akbar
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 348 - 370
  • [4] Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method
    Cheng, Rongjun
    Sun, Fengxin
    Wei, Qi
    Wang, Jufeng
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (06):
  • [5] On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations
    Zhang Yong
    David A. Benson
    Mark M. Meerschaert
    Hans-Peter Scheffler
    [J]. Journal of Statistical Physics, 2006, 123 : 89 - 110
  • [6] On using random walks to solve the space-fractional advection-dispersion equations
    Yong, Z
    Benson, DA
    Meerschaert, MM
    Scheffler, HP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (01) : 89 - 110
  • [7] A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Basu, Treena S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2444 - A2458
  • [8] Stability and convergence of difference methods for two-dimensional Riesz space fractional advection-dispersion equations with delay
    Heris, Mahdi Saedshoar
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS, 2020, 2 (03)
  • [9] HIGH-ORDER NUMERICAL METHOD FOR TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL ADVECTION-DISPERSION EQUATION
    Borhanifar, Abdollah
    Ragusa, Maria Alessandra
    Valizadeh, Sohrab
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (10): : 5495 - 5508
  • [10] The finite volume element method for the two-dimensional space-fractional convection–diffusion equation
    Yanan Bi
    Ziwen Jiang
    [J]. Advances in Difference Equations, 2021