Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy-Leray inequalities

被引:4
|
作者
Goldstein, Gisele Ruiz [1 ]
Goldstein, Jerome A. [1 ]
Kombe, Ismail [2 ]
Tellioglu, Reyhan [2 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Istanbul Commerce Univ, Fac Humanities & Social Sci, Dept Math, Istanbul, Turkey
关键词
Critical exponents; Robin boundary conditions; Hardy-Leray type inequalities; Nonexistence; Positive solutions; ELLIPTIC-OPERATORS; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; HEAT-EQUATION; EXISTENCE;
D O I
10.1007/s10231-022-01226-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is twofold. First is the study of the nonexistence of positive solutions of the parabolic problem {partial derivative u/partial derivative t = Delta(p)u + V(x)u(p-1) + lambda u(q) in Omega x (0, T), u(x, 0) = u(0)(x) >= 0 in Omega, vertical bar del u vertical bar(p-2)partial derivative u/partial derivative v = beta vertical bar u vertical bar(p-2)u on partial derivative Omega x (0, T), where Omega is a bounded domain in R-N with smooth boundary partial derivative Omega, Delta(p)u = div(vertical bar del u vertical bar(p-2)del u) is the p-Laplacian of u, V is an element of L-l(oc)1 (Omega), beta is an element of L-loc(1)(partial derivative Omega), lambda is an element of R, the exponents p and q satisfy 1 < p < 2, and q > 0. Then, we present some sharp Hardy and Leray type inequalities with remainder terms that provide us concrete potentials to use in the partial differential equation we are interested in.
引用
收藏
页码:2927 / 2942
页数:16
相关论文
共 50 条
  • [21] Positive solutions for a class of nonlinear parametric Robin problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Zhang, Youpei
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 429 - 454
  • [22] Positive solutions for nonlinear nonhomogeneous parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    FORUM MATHEMATICUM, 2018, 30 (03) : 553 - 580
  • [23] Positive Solutions for Nonlinear Robin Problems with Concave Terms
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Winowski, Krzysztof
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1145 - 1174
  • [24] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [25] Positive solutions for a class of nonlinear parametric Robin problems
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Youpei Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 429 - 454
  • [26] A weighted Hardy inequality and nonexistence of positive solutions
    Hauer, Daniel
    Rhandi, Abdelaziz
    ARCHIV DER MATHEMATIK, 2013, 100 (03) : 273 - 287
  • [27] A weighted Hardy inequality and nonexistence of positive solutions
    Daniel Hauer
    Abdelaziz Rhandi
    Archiv der Mathematik, 2013, 100 : 273 - 287
  • [28] Nonexistence result for positive solutions of nonlinear elliptic degenerate problems
    Esteban, MJ
    Ramaswamy, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (04) : 835 - 843
  • [29] Nonexistence result for positive solutions of nonlinear elliptic degenerate problems
    Esteban, Maria J.
    Ramaswamy, Mythily
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 26 (04): : 835 - 843
  • [30] EXISTENCE, NONEXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR NONLINEAR EIGENVALUE PROBLEMS
    Bonanno, Gabriele
    Candito, Pasquale
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (04) : 1169 - 1188