Containerless metal single-crystal growth via electromagnetic levitation

被引:4
|
作者
Witteveen, J. P. [1 ]
Vrielink, M. A. B. [1 ]
van Gastel, R. [2 ]
van Houselt, A. [1 ]
Zandvliet, H. J. W. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, Phys Interfaces & Nanomat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Surface Preparat Lab, Rosbayerweg 159, NL-1521 RW Wormerveer, Netherlands
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2021年 / 92卷 / 10期
基金
荷兰研究理事会;
关键词
THERMAL-STRESS; SOLIDIFICATION; RESISTANCE; BEHAVIOR; FURNACE; MELT;
D O I
10.1063/5.0064486
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The growth of elemental metal single-crystals is usually achieved through classic growth techniques such as the Czochralski or floating zone methods. Drawbacks of these techniques are the susceptibility to contamination from the crucible and thermal stress-induced defects due to contact with the ambient, which can be mitigated by growing in a containerless environment. We discuss the development of a novel crystal growth apparatus that employs electromagnetic levitation in a vacuum to grow metal single-crystals of superior quality and purity. This apparatus enables two growth modes: containerless undercooled crystallization and levitation-based Czochralski growth. We describe the experimental setup in terms of coil design, sample insertion and collection, seed insertion, and sample position and temperature tracking. As a proof of concept, we show the successful growth of copper single-crystals.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Electromagnetic levitation containerless processing of metallic materials in microgravity: rapid solidification
    D. M. Matson
    L. Battezzati
    P. K. Galenko
    Ch.-A. Gandin
    A. K. Gangopadhyay
    H. Henein
    K. F. Kelton
    M. Kolbe
    J. Valloton
    S. C. Vogel
    T. Volkmann
    npj Microgravity, 9
  • [22] Epitaxial Single-Crystal Growth of Transition Metal Dichalcogenide Monolayers via the Atomic Sawtooth Au Surface
    Choi, Soo Ho
    Kim, Hyung-Jin
    Song, Bumsub
    Kim, Yong In
    Han, Gyeongtak
    Nguyen, Huong Thi Thanh
    Ko, Hayoung
    Boandoh, Stephen
    Choi, Ji Hoon
    Oh, Chang Seok
    Cho, Hyun Je
    Jin, Jeong Won
    Won, Yo Seob
    Lee, Byung Hoon
    Yun, Seok Joon
    Shin, Bong Gyu
    Jeong, Hu Young
    Kim, Young-Min
    Han, Young-Kyu
    Lee, Young Hee
    Kim, Soo Min
    Kim, Ki Kang
    ADVANCED MATERIALS, 2021, 33 (15)
  • [23] Single-Crystal Growth of Sapphire
    Cockayne, B.
    Chesswas, M.
    Gasson, D. B.
    JOURNAL OF MATERIALS SCIENCE, 1967, 2 (01) : 7 - 11
  • [24] PURIFICATION BY SINGLE-CRYSTAL GROWTH
    TORGESEN, JL
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1966, 137 (A1) : 30 - +
  • [25] DEXTRIN SINGLE-CRYSTAL GROWTH
    KOCHETKOV, NK
    NIKITIN, IV
    BANATSKAIA, MI
    KOZLOV, PV
    DOKLADY AKADEMII NAUK SSSR, 1977, 237 (02): : 343 - 345
  • [26] SINGLE-CRYSTAL GROWTH OF LIAL
    YAHAGI, M
    JOURNAL OF CRYSTAL GROWTH, 1980, 49 (02) : 396 - 398
  • [27] Containerless Processing in Space—Thermophysical Property Measurements Using Electromagnetic Levitation
    I. Egry
    A. Diefenbach
    W. Dreier
    J. Piller
    International Journal of Thermophysics, 2001, 22 : 569 - 578
  • [28] ELECTROMAGNETIC-FIELD APPLICATION IN THE PROCESSES OF SINGLE-CRYSTAL GROWTH UNDER MICROGRAVITY
    GELFGAT, YM
    ACTA ASTRONAUTICA, 1995, 37 : 333 - 345
  • [29] SINGLE-CRYSTAL GROWTH WITH THE CZOCHRALSKI METHOD INVOLVING ROTATIONAL ELECTROMAGNETIC STIRRING OF THE MELT
    BRUCKNER, FU
    SCHWERDTFEGER, K
    JOURNAL OF CRYSTAL GROWTH, 1994, 139 (3-4) : 351 - 356
  • [30] Improved hBN Single-Crystal Growth by Adding Carbon in the Metal Flux
    Zhang, Si-Yuan
    Xu, Kang
    Zhao, Xiao-Kang
    Shao, Zhi-Yong
    Wan, Neng
    CRYSTAL GROWTH & DESIGN, 2019, 19 (11) : 6252 - 6257