On upper transversals in 3-uniform hypergraphs

被引:0
|
作者
Henning, Michael A. [1 ]
Yeo, Anders [1 ,2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 04期
基金
新加坡国家研究基金会;
关键词
INDEPENDENT DOMINATION; PARAMETERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. The upper transversal number Upsilon(H) of H is the maximum cardinality of a minimal transversal in H. We show that if H is a connected 3-uniform hypergraph of order n, then Upsilon(H) > 1.4855 3 root n - 2. For n sufficiently large, we construct infinitely many connected 3-uniform hypergraphs, H, of order n satisfying Upsilon(H) < 2.5199 3 root n. We conjecture that sup(n ->infinity) (inf Upsilon(H)/3 root n) = 3 root 16, where -F2, the infimum is taken over all connected 3-uniform hypergraphs H of order n.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Tao Feng
    Yan-xun Chang
    Science in China Series A: Mathematics, 2007, 50 : 1035 - 1044
  • [32] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Feng, Tao
    Chang, Yan-xun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07): : 1035 - 1044
  • [33] On the rainbow matching conjecture for 3-uniform hypergraphs
    Gao, Jun
    Lu, Hongliang
    Ma, Jie
    Yu, Xingxing
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) : 2423 - 2440
  • [34] BIG RAMSEY DEGREES OF 3-UNIFORM HYPERGRAPHS
    Balko, M.
    Chodounsky, D.
    Hubicka, J.
    Konecny, M.
    Vena, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 415 - 422
  • [35] On line graphs of linear 3-uniform hypergraphs
    Metelsky, Y
    Tyshkevich, R
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 243 - 251
  • [36] Quasirandomness, counting and regularity for 3-uniform hypergraphs
    Gowers, WT
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2): : 143 - 184
  • [37] Counting small cliques in 3-uniform hypergraphs
    Peng, Y
    Rödl, V
    Skokan, J
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 371 - 413
  • [38] Edge-coloring of 3-uniform hypergraphs
    Obszarski, Pawel
    Jastrzebski, Andrzej
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 48 - 52
  • [39] On Generalized Ramsey Numbers for 3-Uniform Hypergraphs
    Dudek, Andrzej
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 217 - 223
  • [40] HAMILTON DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS
    VERRALL, H
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 333 - 348