共 50 条
On upper transversals in 3-uniform hypergraphs
被引:0
|作者:
Henning, Michael A.
[1
]
Yeo, Anders
[1
,2
]
机构:
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
来源:
基金:
新加坡国家研究基金会;
关键词:
INDEPENDENT DOMINATION;
PARAMETERS;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. The upper transversal number Upsilon(H) of H is the maximum cardinality of a minimal transversal in H. We show that if H is a connected 3-uniform hypergraph of order n, then Upsilon(H) > 1.4855 3 root n - 2. For n sufficiently large, we construct infinitely many connected 3-uniform hypergraphs, H, of order n satisfying Upsilon(H) < 2.5199 3 root n. We conjecture that sup(n ->infinity) (inf Upsilon(H)/3 root n) = 3 root 16, where -F2, the infimum is taken over all connected 3-uniform hypergraphs H of order n.
引用
收藏
页数:9
相关论文