Common values of a class of linear recurrences

被引:2
|
作者
Petho, Attila [1 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 400, H-4002 Debrecen, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 06期
关键词
Linear recurrences; Baker?s method; S-UNITS; LOGARITHMS; NUMBERS;
D O I
10.1016/j.indag.2022.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (an), (bn) be linear recursive sequences of integers with characteristic polynomials A(X), B(X) is an element of Z[X] respectively. Assume that A(X) has a dominating and simple real root alpha, while B(X) has a pair of conjugate complex dominating and simple roots C, C over line . Assume further that alpha, C, alpha/C and C over line /C are not roots of unity and delta = log |C|/log |alpha| is an element of Q. Then there are effectively computable constants c0, c1 > 0 such that the inequality|an - bm| > |an|1-(c0 log2 n)/nholds for all n, m is an element of Z2 >= 0 with max{n, m} > c1. We present c0 explicitly.(c) 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1172 / 1188
页数:17
相关论文
共 50 条