Bounded VC-Dimension Implies the Schur-Erdos Conjecture

被引:3
|
作者
Fox, Jacob [1 ]
Pach, Janos [2 ,3 ,4 ]
Suk, Andrew [5 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Renyi Inst, Budapest, Hungary
[3] IST Austria, Vienna, Austria
[4] MIPT, Moscow, Russia
[5] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
奥地利科学基金会;
关键词
05D10;
D O I
10.1007/s00493-021-4530-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph K-n, there is a monochromatic copy of K-3. He showed that r(3; m) <= O(m!), and a simple construction demonstrates that r(3; m) >= 2(omega(m)). An old conjecture of Erdos states that r(3; m) = 2(Theta(m)). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
引用
收藏
页码:803 / 813
页数:11
相关论文
共 50 条
  • [1] Bounded VC-Dimension Implies the Schur-Erdős Conjecture
    Jacob Fox
    János Pach
    Andrew Suk
    Combinatorica, 2021, 41 : 803 - 813
  • [2] Bounded VC-dimension implies a fractional Helly theorem
    Matousek, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 251 - 255
  • [3] Bounded VC-Dimension Implies a Fractional Helly Theorem
    Jirí Matousek
    Discrete & Computational Geometry, 2004, 31 : 251 - 255
  • [4] Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension
    Jacob Fox
    János Pach
    Andrew Suk
    Discrete & Computational Geometry, 2019, 61 : 809 - 829
  • [5] Erds-Hajnal Conjecture for Graphs with Bounded VC-Dimension
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (04) : 809 - 829
  • [6] VC-dimension and Erdos-Posa property
    Bousquet, Nicolas
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2302 - 2317
  • [7] Sperner families of bounded VC-dimension
    Anstee, RP
    Sali, A
    DISCRETE MATHEMATICS, 1997, 175 (1-3) : 13 - 21
  • [8] Approximate subgroups with bounded VC-dimension
    Gabriel Conant
    Anand Pillay
    Mathematische Annalen, 2024, 388 : 1001 - 1043
  • [9] Approximate subgroups with bounded VC-dimension
    Conant, Gabriel
    Pillay, Anand
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1001 - 1043
  • [10] DISCREPANCY AND APPROXIMATIONS FOR BOUNDED VC-DIMENSION
    MATOUSEK, J
    WELZL, E
    WERNISCH, L
    COMBINATORICA, 1993, 13 (04) : 455 - 466