Bounded VC-Dimension Implies the Schur-Erdos Conjecture

被引:3
|
作者
Fox, Jacob [1 ]
Pach, Janos [2 ,3 ,4 ]
Suk, Andrew [5 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Renyi Inst, Budapest, Hungary
[3] IST Austria, Vienna, Austria
[4] MIPT, Moscow, Russia
[5] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
奥地利科学基金会;
关键词
05D10;
D O I
10.1007/s00493-021-4530-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph K-n, there is a monochromatic copy of K-3. He showed that r(3; m) <= O(m!), and a simple construction demonstrates that r(3; m) >= 2(omega(m)). An old conjecture of Erdos states that r(3; m) = 2(Theta(m)). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
引用
收藏
页码:803 / 813
页数:11
相关论文
共 50 条
  • [31] Calculating the VC-Dimension of Decision Trees
    Aslan, Oezlem
    Yildiz, Olcay Taner
    Alpaydin, Ethem
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 193 - +
  • [32] Elementary classes of finite VC-dimension
    Domenico Zambella
    Archive for Mathematical Logic, 2015, 54 : 511 - 520
  • [33] The VC-dimension of subclasses of pattern languages
    Mitchell, A
    Scheffer, T
    Sharma, A
    Stephan, F
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 93 - 105
  • [34] Robust subgaussian estimation with VC-dimension
    Depersin, Jules
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 971 - 989
  • [35] ON THE NUMBER OF CYCLES OF GRAPHS AND VC-DIMENSION
    Mofidi, Alireza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 121 - 135
  • [36] VC-DIMENSION AND DISTANCE CHAINS IN Fdq
    Ascoli, Ruben
    Betti, Livia
    Cheigh, Justin
    Iosevich, Alex
    Jeong, Ryan
    Liu, Xuyan
    McDonald, Brian
    Milgrim, Wyatt
    Miller, Steven j.
    Acosta, Francisco romero
    Iannuzzelli, Santiago velazquez
    KOREAN JOURNAL OF MATHEMATICS, 2024, 32 (01): : 43 - 57
  • [37] Parallelograms and the VC-dimension of the distance sets
    Pham, Thang
    DISCRETE APPLIED MATHEMATICS, 2024, 349 : 195 - 200
  • [38] Elementary classes of finite VC-dimension
    Zambella, Domenico
    ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (5-6) : 511 - 520
  • [39] NEURAL NETS WITH SUPERLINEAR VC-DIMENSION
    MAASS, W
    NEURAL COMPUTATION, 1994, 6 (05) : 877 - 884
  • [40] VC-Dimension of Univariate Decision Trees
    Yildiz, Olcay Taner
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (02) : 378 - 387