Bounded VC-Dimension Implies the Schur-Erdos Conjecture

被引:3
|
作者
Fox, Jacob [1 ]
Pach, Janos [2 ,3 ,4 ]
Suk, Andrew [5 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Renyi Inst, Budapest, Hungary
[3] IST Austria, Vienna, Austria
[4] MIPT, Moscow, Russia
[5] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
奥地利科学基金会;
关键词
05D10;
D O I
10.1007/s00493-021-4530-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph K-n, there is a monochromatic copy of K-3. He showed that r(3; m) <= O(m!), and a simple construction demonstrates that r(3; m) >= 2(omega(m)). An old conjecture of Erdos states that r(3; m) = 2(Theta(m)). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
引用
收藏
页码:803 / 813
页数:11
相关论文
共 50 条
  • [11] Sperner families of bounded VC-dimension
    Department of Mathematics, University of British Columbia, #121-1984 Mathematics Road, Vancouver, BC V6T 1Y4, Canada
    不详
    Discrete Math, 1-3 (13-21):
  • [12] On the Zarankiewicz Problem for Graphs with Bounded VC-Dimension
    Janzer, Oliver
    Pohoata, Cosmin
    COMBINATORICA, 2024, 44 (04) : 839 - 848
  • [13] Convolutions of sets with bounded VC-dimension are uniformly continuous
    Sisask, Olof
    DISCRETE ANALYSIS, 2021,
  • [14] The Schur-Erdos problem for sesmi-algebraic colorings
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 239 (01) : 39 - 57
  • [15] Tight bounds on the maximum size of a set of permutations with bounded VC-dimension
    Cibulka, Josef
    Kyncl, Jan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (07) : 1461 - 1478
  • [16] VC-Dimension of Rule Sets
    Yildiz, Olcay Taner
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3576 - 3581
  • [17] VC-Dimension of Sets of Permutations
    Ran Raz
    Combinatorica, 2000, 20 : 241 - 255
  • [18] ON THE VC-DIMENSION OF BINARY CODES
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2161 - 2171
  • [19] Bracketing entropy and VC-dimension
    Yu. V. Malykhin
    Mathematical Notes, 2012, 91 : 800 - 807
  • [20] On the VC-Dimension of Binary Codes
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 594 - 598