Bounded VC-Dimension Implies the Schur-Erdős Conjecture

被引:0
|
作者
Jacob Fox
János Pach
Andrew Suk
机构
[1] Stanford University,Department of Mathematics
[2] University of California at San Diego,undefined
[3] Rényi Institute,undefined
[4] IST,undefined
[5] MIPT,undefined
来源
Combinatorica | 2021年 / 41卷
关键词
05D10;
D O I
暂无
中图分类号
学科分类号
摘要
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph Kn, there is a monochromatic copy of K3. He showed that r(3; m) ≤ O(m!), and a simple construction demonstrates that r(3; m) ≥ 2Ω(m). An old conjecture of Erdős states that r(3; m) = 2Θ(m). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
引用
收藏
页码:803 / 813
页数:10
相关论文
共 19 条
  • [1] Bounded VC-Dimension Implies the Schur-Erdos Conjecture
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    COMBINATORICA, 2021, 41 (06) : 803 - 813
  • [2] Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension
    Jacob Fox
    János Pach
    Andrew Suk
    Discrete & Computational Geometry, 2019, 61 : 809 - 829
  • [3] Bounded VC-dimension implies a fractional Helly theorem
    Matousek, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 251 - 255
  • [4] Bounded VC-Dimension Implies a Fractional Helly Theorem
    Jirí Matousek
    Discrete & Computational Geometry, 2004, 31 : 251 - 255
  • [5] Erds-Hajnal Conjecture for Graphs with Bounded VC-Dimension
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (04) : 809 - 829
  • [6] Sperner families of bounded VC-dimension
    Anstee, RP
    Sali, A
    DISCRETE MATHEMATICS, 1997, 175 (1-3) : 13 - 21
  • [7] Approximate subgroups with bounded VC-dimension
    Gabriel Conant
    Anand Pillay
    Mathematische Annalen, 2024, 388 : 1001 - 1043
  • [8] Approximate subgroups with bounded VC-dimension
    Conant, Gabriel
    Pillay, Anand
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1001 - 1043
  • [9] DISCREPANCY AND APPROXIMATIONS FOR BOUNDED VC-DIMENSION
    MATOUSEK, J
    WELZL, E
    WERNISCH, L
    COMBINATORICA, 1993, 13 (04) : 455 - 466
  • [10] Sperner families of bounded VC-dimension
    Department of Mathematics, University of British Columbia, #121-1984 Mathematics Road, Vancouver, BC V6T 1Y4, Canada
    不详
    Discrete Math, 1-3 (13-21):