High pressure multi-component vapor-liquid equilibrium data and model predictions for the LNG industry

被引:9
|
作者
Hughes, Thomas J. [1 ]
Guo, Jerry Y. [1 ]
Baker, Corey J. [1 ]
Rowland, Darren [1 ]
Graham, Brendan F. [1 ]
Marsh, Kenneth N. [1 ]
Huang, Stanley H. [2 ]
May, Eric F. [1 ]
机构
[1] Univ Western Australia, Sch Mech & Chem Engn, Fluid Sci & Resources Div, Crawley, WA 6009, Australia
[2] Chevron Energy Technol Co, Houston, TX 77002 USA
来源
基金
澳大利亚研究理事会;
关键词
LNG; Natural gas; Distillation; Phase equilibrium; Gas purification; EQUATION-OF-STATE; TEMPERATURES;
D O I
10.1016/j.jct.2017.05.023
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate simulations of scrub columns in liquefied natural gas (LNG) plants are challenging, requiring frequent solution of the non-linear equations governing vapor-liquid equilibrium (VLE), material, and energy balances for multi-component mixtures. Reliable fluid property predictions at high pressures and low temperatures are thus crucial; however, no high-quality multi-component VLE data at conditions relevant to the LNG scrub column are available to test commonly-used equations of state (EOS). Here we report VLE measurements at pressures to 9 MPa and temperatures from (203 to 273) K for mixtures containing CH4, C2H6, C3H8, iC(4)H(10), nC(4)H(10) and/or N-2. Far from the mixture's critical point, the GERG-2008 EOS predictions were more accurate than the Peng-Robinson EOS predictions. Above 7 MPa both EOS under-predicted the liquid phase's methane content and over-predicted its butane content by 10-50 times the experimental uncertainty. Rowland et al.'s recent revision of the GERG model reduced the maximum deviations by (17-35)%. Further optimizations should improve the constituent binary departure functions and hence improve the description of multicomponent VLE data, particularly at conditions relevant to LNG production. (C) 2017 Elsevier Ltd.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [41] High-pressure rectification I - Vapor-liquid equilibrium relations at high pressures
    Cummings, LWT
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1931, 23 : 900 - 902
  • [42] High pressure vaporization of burning droplet with flash vapor-liquid equilibrium calculation
    Shin, H
    Lee, KW
    Yoon, WS
    Chae, J
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2003, 30 (04) : 465 - 474
  • [43] Low-pressure vapor-liquid data reduction using only equilibrium composition data
    Focke, WW
    Grobler, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (02) : 114 - 120
  • [44] Thermodynamic and statistical consistency of vapor-liquid equilibrium data
    Carrero-Mantilla, Javier I.
    de Jesus Ramirez-Ramirez, Didgenes
    Suarez-Cifuentes, Julio F.
    FLUID PHASE EQUILIBRIA, 2016, 412 : 158 - 167
  • [45] Use a spreadsheet to fit vapor-liquid equilibrium data
    Paulsen, VS
    CHEMICAL ENGINEERING, 2002, 109 (03) : 78 - 82
  • [46] TREATMENT OF ISOBARIC BINARY VAPOR-LIQUID EQUILIBRIUM DATA
    TAO, LC
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1967, 6 (01): : 83 - &
  • [47] Quality Assessment Algorithm for Vapor-Liquid Equilibrium Data
    Kang, Jeong Won
    Diky, Vladimir
    Chirico, Robert D.
    Magee, Joseph W.
    Muzny, Chris D.
    Abdulagatov, Ilmutdin
    Kazakov, Andrei F.
    Frenkel, Michael
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (09): : 3631 - 3640
  • [48] PREDICTION OF VAPOR-LIQUID EQUILIBRIUM DATA OF BINARY SYSTEMS
    NAGATA, I
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1965, 43 (02): : 84 - &
  • [49] Vapor-liquid critical properties of multi-component mixtures containing carbon dioxide and n-alkanes
    Qiu, Delin
    Fu, Jinyan
    Cai, Jun
    Peng, Changjun
    Liu, Honglai
    Hu, Ying
    FLUID PHASE EQUILIBRIA, 2006, 248 (02) : 191 - 196
  • [50] CALCULATION OF NET DEVIATIONS FROM CONSISTENCY IN LOW PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA
    FRIEND, J
    SCHELLER, WA
    WEBER, JH
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1970, 9 (01): : 144 - &