High pressure multi-component vapor-liquid equilibrium data and model predictions for the LNG industry

被引:9
|
作者
Hughes, Thomas J. [1 ]
Guo, Jerry Y. [1 ]
Baker, Corey J. [1 ]
Rowland, Darren [1 ]
Graham, Brendan F. [1 ]
Marsh, Kenneth N. [1 ]
Huang, Stanley H. [2 ]
May, Eric F. [1 ]
机构
[1] Univ Western Australia, Sch Mech & Chem Engn, Fluid Sci & Resources Div, Crawley, WA 6009, Australia
[2] Chevron Energy Technol Co, Houston, TX 77002 USA
来源
基金
澳大利亚研究理事会;
关键词
LNG; Natural gas; Distillation; Phase equilibrium; Gas purification; EQUATION-OF-STATE; TEMPERATURES;
D O I
10.1016/j.jct.2017.05.023
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate simulations of scrub columns in liquefied natural gas (LNG) plants are challenging, requiring frequent solution of the non-linear equations governing vapor-liquid equilibrium (VLE), material, and energy balances for multi-component mixtures. Reliable fluid property predictions at high pressures and low temperatures are thus crucial; however, no high-quality multi-component VLE data at conditions relevant to the LNG scrub column are available to test commonly-used equations of state (EOS). Here we report VLE measurements at pressures to 9 MPa and temperatures from (203 to 273) K for mixtures containing CH4, C2H6, C3H8, iC(4)H(10), nC(4)H(10) and/or N-2. Far from the mixture's critical point, the GERG-2008 EOS predictions were more accurate than the Peng-Robinson EOS predictions. Above 7 MPa both EOS under-predicted the liquid phase's methane content and over-predicted its butane content by 10-50 times the experimental uncertainty. Rowland et al.'s recent revision of the GERG model reduced the maximum deviations by (17-35)%. Further optimizations should improve the constituent binary departure functions and hence improve the description of multicomponent VLE data, particularly at conditions relevant to LNG production. (C) 2017 Elsevier Ltd.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] Tests for the accuracy of vapor-liquid equilibrium data
    Beatty, HA
    Calingaert, G
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1934, 26 : 904 - 909
  • [32] Vapor-liquid equilibrium data base in microcomputer
    Zhang, Chanjun
    Jin, Zhangli
    Liu, Kunyuan
    Applied Numerical Mathematics, 1991, 8 (03):
  • [33] Guidelines for the Analysis of Vapor-Liquid Equilibrium Data
    Mathias, Paul M.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2017, 62 (08): : 2231 - 2233
  • [34] METHOD OF EVALUATING DATA ON VAPOR-LIQUID EQUILIBRIUM AT HIGH PRESUSRES.
    Kobyakov, V.M.
    Kogan, V.B.
    Zernov, V.S.
    Journal of applied chemistry of the USSR, 1987, 60 (1 pt 1): : 74 - 78
  • [35] Vapor-liquid equilibrium of formaldehyde mixtures: New data and model revision
    Albert, M
    Hahnenstein, I
    Hasse, H
    Maurer, G
    AICHE JOURNAL, 1996, 42 (06) : 1741 - 1752
  • [36] RELATIVE ACCURACY OF VAPOR-LIQUID EQUILIBRIUM DATA OBTAINED FROM VAPOR COMPOSITION AND PRESSURE MEASUREMENTS
    MACKAY, D
    SALVADOR, RJ
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (01): : 167 - &
  • [37] High-pressure vapor-liquid equilibrium data for CO2-orange peel oil
    Stuart, GR
    Dariva, C
    Oliveira, JV
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2000, 17 (02) : 181 - 189
  • [38] PREDICTION OF VAPOR-LIQUID EQUILIBRIUM DATA - BINARY HYDROCARBON SYSTEMS WITH ONE AROMATIC COMPONENT
    LU, BCY
    GRAYDON, WF
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1957, 49 (06): : 1058 - 1060
  • [39] Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions
    Hsieh, Chieh-Ming
    Sandler, Stanley I.
    Lin, Shiang-Tai
    FLUID PHASE EQUILIBRIA, 2010, 297 (01) : 90 - 97
  • [40] VAPOR-LIQUID EQUILIBRIUM BY METHOD OF TOTAL PRESSURE MEASUREMENT
    MINH, DC
    RUEL, M
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1971, 49 (01): : 159 - &