High pressure multi-component vapor-liquid equilibrium data and model predictions for the LNG industry

被引:9
|
作者
Hughes, Thomas J. [1 ]
Guo, Jerry Y. [1 ]
Baker, Corey J. [1 ]
Rowland, Darren [1 ]
Graham, Brendan F. [1 ]
Marsh, Kenneth N. [1 ]
Huang, Stanley H. [2 ]
May, Eric F. [1 ]
机构
[1] Univ Western Australia, Sch Mech & Chem Engn, Fluid Sci & Resources Div, Crawley, WA 6009, Australia
[2] Chevron Energy Technol Co, Houston, TX 77002 USA
来源
基金
澳大利亚研究理事会;
关键词
LNG; Natural gas; Distillation; Phase equilibrium; Gas purification; EQUATION-OF-STATE; TEMPERATURES;
D O I
10.1016/j.jct.2017.05.023
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate simulations of scrub columns in liquefied natural gas (LNG) plants are challenging, requiring frequent solution of the non-linear equations governing vapor-liquid equilibrium (VLE), material, and energy balances for multi-component mixtures. Reliable fluid property predictions at high pressures and low temperatures are thus crucial; however, no high-quality multi-component VLE data at conditions relevant to the LNG scrub column are available to test commonly-used equations of state (EOS). Here we report VLE measurements at pressures to 9 MPa and temperatures from (203 to 273) K for mixtures containing CH4, C2H6, C3H8, iC(4)H(10), nC(4)H(10) and/or N-2. Far from the mixture's critical point, the GERG-2008 EOS predictions were more accurate than the Peng-Robinson EOS predictions. Above 7 MPa both EOS under-predicted the liquid phase's methane content and over-predicted its butane content by 10-50 times the experimental uncertainty. Rowland et al.'s recent revision of the GERG model reduced the maximum deviations by (17-35)%. Further optimizations should improve the constituent binary departure functions and hence improve the description of multicomponent VLE data, particularly at conditions relevant to LNG production. (C) 2017 Elsevier Ltd.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] PREDICTION OF VAPOR-LIQUID EQUILIBRIUM DATA
    SPINNER, IH
    LU, BCY
    GRAYDON, WF
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1956, 48 (01): : 147 - 153
  • [22] CORRELATION OF VAPOR-LIQUID EQUILIBRIUM DATA
    TIERNEY, JW
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1958, 50 (04): : 707 - 710
  • [23] Vapor-liquid equilibrium at high temperature
    Palavra, AMF
    PURE AND APPLIED CHEMISTRY, 1996, 68 (08) : 1515 - 1520
  • [24] A METHOD FOR CALCULATING VAPOR-LIQUID EQUILIBRIUM DATA IN TRI-COMPONENT SYSTEMS
    KOGAN, VB
    SAFRONOV, VM
    ZHURNAL FIZICHESKOI KHIMII, 1959, 33 (06): : 1353 - 1359
  • [25] High-pressure vapor-liquid equilibrium for ethylene plus benzene
    Shi, YF
    Ma, HL
    Gao, Y
    Yuan, WK
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1999, 44 (01): : 30 - 31
  • [26] High-pressure vapor-liquid equilibrium for nitrogen plus methanol
    Laursen, T
    Andersen, SI
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2002, 47 (05): : 1173 - 1174
  • [27] A saturated vapor pressure explicit model with temperature and ion concentration for multi-component liquid desiccants
    Che, Chunwen
    Yin, Yonggao
    Mao, Hongcai
    APPLIED THERMAL ENGINEERING, 2023, 220
  • [28] Vapor pressure and isobaric vapor-liquid equilibrium for dichloronitrobenzene isomers
    Yao, Ganbing
    Yang, Zhipeng
    Zhang, Bin
    Xu, Hui
    Zhao, Hongkun
    FLUID PHASE EQUILIBRIA, 2014, 367 : 103 - 108
  • [29] PREDICTION OF BINARY VAPOR-LIQUID EQUILIBRIUM DATA
    HO, JCK
    LU, BCY
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1961, 53 (05): : 384 - 386
  • [30] TESTING CONSISTENCY OF VAPOR-LIQUID EQUILIBRIUM DATA
    TAO, LC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1964, 56 (02): : 36 - &