Binding number conditions for (a,b,k)-critical graphs

被引:7
|
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
graph; a; b]-factor; binding number; (a; b; k)-critical graph;
D O I
10.4134/BKMS.2008.45.1.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, and let a, b, k be integers with 0 <= a <= b, k >= 0. Then graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this paper, the relationship between binding number bind(G) and (a, b, k)critical graph is discussed, and a binding number condition for a graph to be (a, b, k)-critical is given.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [21] Binding Number and Fractional k-Factors of Graphs
    Zhou, Sizhong
    Xu, Zurun
    Duan, Ziming
    ARS COMBINATORIA, 2011, 102 : 473 - 481
  • [22] Degree conditions for graphs to be fractional (a, b, n)-critical graphs
    Li J.
    Ma Y.
    Journal of Systems Science and Complexity, 2006, 19 (4) : 491 - 497
  • [23] A new sufficient condition for graphs to be (a, b, k)-critical graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 191 - 199
  • [24] DEGREE CONDITIONS FOR GRAPHS TO BE FRACTIONAL(a,b,n)-CRITICAL GRAPHS
    Jianxiang LI Department of Mathematics.Hunan University of Science and Technology
    Journal of Systems Science & Complexity, 2006, (04) : 491 - 497
  • [25] On All Fractional(a,b,k)-Critical Graphs
    Si Zhong ZHOU
    Zhi Ren SUN
    Acta Mathematica Sinica(English Series), 2014, 30 (04) : 696 - 702
  • [26] On all fractional (a, b, k)-critical graphs
    Zhou, Si Zhong
    Sun, Zhi Ren
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 696 - 702
  • [27] Some properties of (a , b , k )-critical graphs
    Zhou, Sizhong
    Zhang, Yuli
    Liu, Hongxia
    FILOMAT, 2024, 38 (16) : 5885 - 5894
  • [28] On all fractional (a, b, k)-critical graphs
    Si Zhong Zhou
    Zhi Ren Sun
    Acta Mathematica Sinica, English Series, 2014, 30 : 696 - 702
  • [29] Binding number and path-factor critical deleted graphs
    Chen, Yuan
    Dai, Guowei
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 197 - 200
  • [30] Binding number, k-factor and spectral radius of graphs
    Fana, Dandan
    Lin, Huiqiu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):