On all fractional (a, b, k)-critical graphs

被引:18
|
作者
Zhou, Si Zhong [1 ]
Sun, Zhi Ren [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; neighborhood union; all fractional [a; b]-factor; all fractional (a; b; k)-critical; NEIGHBORHOOD CONDITION; K-FACTORS; EXISTENCE;
D O I
10.1007/s10114-014-2629-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, k, r be nonnegative integers with 1 a parts per thousand currency sign a a parts per thousand currency sign b and r a parts per thousand yen 2. Let G be a graph of order n with . In this paper, we first show a characterization for all fractional (a, b, k)-critical graphs. Then using the result, we prove that G is all fractional (a, b, k)-critical if and for any independent subset {x (1), x (2), aEuro broken vertical bar, x (r) } in G. Furthermore, it is shown that the lower bound on the condition is best possible in some sense, and it is an extension of Lu's previous result.
引用
收藏
页码:696 / 702
页数:7
相关论文
共 50 条
  • [1] On All Fractional(a,b,k)-Critical Graphs
    Si Zhong ZHOU
    Zhi Ren SUN
    Acta Mathematica Sinica(English Series), 2014, 30 (04) : 696 - 702
  • [2] On all fractional (a, b, k)-critical graphs
    Si Zhong Zhou
    Zhi Ren Sun
    Acta Mathematica Sinica, English Series, 2014, 30 : 696 - 702
  • [3] A neighborhood condition for all fractional (a, b, k)-critical graphs
    Jiang, Jiashang
    ARS COMBINATORIA, 2019, 142 : 55 - 63
  • [4] Binding Numbers for all Fractional (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Sun, Zhiren
    FILOMAT, 2014, 28 (04) : 709 - 713
  • [5] INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS
    Yuan, Yuan
    Hao, Rong-Xia
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 183 - 190
  • [6] Toughness condition for the existence of all fractional (a, b, k)-critical graphs
    Yuan, Yuan
    Hao, Rong-Xia
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2308 - 2314
  • [7] Discussion on Fractional(a, b, k)-critical Covered Graphs
    Wei ZHANG
    Su-fang WANG
    Acta Mathematicae Applicatae Sinica, 2022, 38 (02) : 304 - 311
  • [8] Notes on fractional (a, b, k)-critical covered graphs
    Sun, Zhiren
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (01): : 105 - 115
  • [9] A Result on Fractional(a, b, k)-critical Covered Graphs
    Si-zhong ZHOU
    Acta Mathematicae Applicatae Sinica, 2021, 37 (04) : 657 - 664
  • [10] A Result on Fractional (a, b, k)-critical Covered Graphs
    Si-zhong Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 657 - 664