INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS

被引:20
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
independence number; connectivity; fractional; a; b]-factor; (a; b; k)-critical graph; all fractional (a; SIMPLIFIED EXISTENCE THEOREMS; F)-FACTORS; (G;
D O I
10.7151/dmgt.2075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and a, b and k be nonnegative integers with 1 <= a <= b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if kappa(G) >= max {(b+1)(2)+2k/2, (b+1)(2)alpha(G)+4ak/4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [1] INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL (a, b, k)-CRITICAL COVERED GRAPHS
    Zhou, Sizhong
    Wu, Jiancheng
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2535 - 2542
  • [2] Independence number, connectivity and (a, b, k)-critical graphs
    Zhou, Sizhong
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4144 - 4148
  • [3] Independence number and connectivity for fractional ID-k-factor-critical graphs
    Zhou, Sizhong
    Bian, Qiuju
    Zhou, S. (zsz.cumt@163.com), 1600, Charles Babbage Research Centre (89): : 215 - 222
  • [4] On All Fractional(a,b,k)-Critical Graphs
    Si Zhong ZHOU
    Zhi Ren SUN
    Acta Mathematica Sinica(English Series), 2014, 30 (04) : 696 - 702
  • [5] On all fractional (a, b, k)-critical graphs
    Zhou, Si Zhong
    Sun, Zhi Ren
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 696 - 702
  • [6] On all fractional (a, b, k)-critical graphs
    Si Zhong Zhou
    Zhi Ren Sun
    Acta Mathematica Sinica, English Series, 2014, 30 : 696 - 702
  • [7] Minimum Degree, Independence Number and (a, b, k)-Critical Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2013, 108 : 425 - 430
  • [8] A neighborhood condition for all fractional (a, b, k)-critical graphs
    Jiang, Jiashang
    ARS COMBINATORIA, 2019, 142 : 55 - 63
  • [9] Binding Numbers for all Fractional (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Sun, Zhiren
    FILOMAT, 2014, 28 (04) : 709 - 713
  • [10] Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs
    Bian, Qiuju
    Zhou, Sizhong
    FILOMAT, 2015, 29 (04) : 757 - 761