INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS

被引:20
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
independence number; connectivity; fractional; a; b]-factor; (a; b; k)-critical graph; all fractional (a; SIMPLIFIED EXISTENCE THEOREMS; F)-FACTORS; (G;
D O I
10.7151/dmgt.2075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and a, b and k be nonnegative integers with 1 <= a <= b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if kappa(G) >= max {(b+1)(2)+2k/2, (b+1)(2)alpha(G)+4ak/4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [21] A Result on Fractional (a, b, k)-critical Covered Graphs
    Si-zhong Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 657 - 664
  • [22] Discussion on Fractional (a, b, k)-critical Covered Graphs
    Wei Zhang
    Su-fang Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 304 - 311
  • [23] Discussion on Fractional (a, b, k)-critical Covered Graphs
    Zhang, Wei
    Wang, Su-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02): : 304 - 311
  • [24] A Result on Fractional (a, b, k)-critical Covered Graphs
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 657 - 664
  • [25] An isolated toughness condition for graphs to be fractional (a, b, k)-critical graphs
    Zhou, Sizhong
    Pan, Quanru
    UTILITAS MATHEMATICA, 2013, 92 : 251 - 260
  • [26] On the k-independence number of graphs
    Abiad, A.
    Coutinho, G.
    Fiol, M. A.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2875 - 2885
  • [27] On the k-independence number in graphs
    Bouchou, Ahmed
    Blidia, Mostafa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 311 - 322
  • [28] Binding number conditions for (a,b,k)-critical graphs
    Zhou, Sizhong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 53 - 57
  • [29] On Critical Difference, Independence Number and Matching Number of Graphs
    Lu, Hongliang
    Yang, Zixuan
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [30] On Critical Difference, Independence Number and Matching Number of Graphs
    Hongliang Lu
    Zixuan Yang
    Graphs and Combinatorics, 2023, 39