INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS

被引:20
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
independence number; connectivity; fractional; a; b]-factor; (a; b; k)-critical graph; all fractional (a; SIMPLIFIED EXISTENCE THEOREMS; F)-FACTORS; (G;
D O I
10.7151/dmgt.2075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and a, b and k be nonnegative integers with 1 <= a <= b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if kappa(G) >= max {(b+1)(2)+2k/2, (b+1)(2)alpha(G)+4ak/4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [31] On k-independence critical graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 289 - 298
  • [32] Independence number and [a, b]-factors of graphs
    Tang, Siping
    ARS COMBINATORIA, 2012, 106 : 247 - 255
  • [33] ON THE INDEPENDENCE NUMBER OF EDGE CHROMATIC CRITICAL GRAPHS
    Pang, Shiyou
    Miao, Lianying
    Song, Wenyao
    Miao, Zhengke
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 577 - 584
  • [34] On the Independence Number of Edge Chromatic Critical Graphs
    Miao Lianying
    ARS COMBINATORIA, 2011, 98 : 471 - 481
  • [35] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Su-Fang Wang
    Wei Zhang
    Journal of the Operations Research Society of China, 2023, 11 : 197 - 205
  • [36] Binding numbers for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (02): : 115 - 121
  • [37] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205
  • [38] Degree conditions for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Xu, Yang
    Sun, Zhiren
    INFORMATION PROCESSING LETTERS, 2019, 152
  • [39] Independence and connectivity in 3-domination-critical graphs
    Zhang, LZ
    Tian, F
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 227 - 236
  • [40] Independence Number and k-Trees of Graphs
    Yan, Zheng
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1089 - 1093