On all fractional (a, b, k)-critical graphs

被引:18
|
作者
Zhou, Si Zhong [1 ]
Sun, Zhi Ren [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; neighborhood union; all fractional [a; b]-factor; all fractional (a; b; k)-critical; NEIGHBORHOOD CONDITION; K-FACTORS; EXISTENCE;
D O I
10.1007/s10114-014-2629-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, k, r be nonnegative integers with 1 a parts per thousand currency sign a a parts per thousand currency sign b and r a parts per thousand yen 2. Let G be a graph of order n with . In this paper, we first show a characterization for all fractional (a, b, k)-critical graphs. Then using the result, we prove that G is all fractional (a, b, k)-critical if and for any independent subset {x (1), x (2), aEuro broken vertical bar, x (r) } in G. Furthermore, it is shown that the lower bound on the condition is best possible in some sense, and it is an extension of Lu's previous result.
引用
收藏
页码:696 / 702
页数:7
相关论文
共 50 条