Binding number conditions for (a,b,k)-critical graphs

被引:7
|
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
graph; a; b]-factor; binding number; (a; b; k)-critical graph;
D O I
10.4134/BKMS.2008.45.1.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, and let a, b, k be integers with 0 <= a <= b, k >= 0. Then graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this paper, the relationship between binding number bind(G) and (a, b, k)critical graph is discussed, and a binding number condition for a graph to be (a, b, k)-critical is given.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [1] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [2] Binding numbers and (a, b, k)-critical graphs
    Lv, Xiangyang
    ARS COMBINATORIA, 2011, 102 : 353 - 358
  • [3] Independence number, connectivity and (a, b, k)-critical graphs
    Zhou, Sizhong
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4144 - 4148
  • [4] Notes on the binding numbers for (a,b,k)-critical graphs
    Zhou, Sizhong
    Jiang, Jiashang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 307 - 314
  • [5] Some New Sufficient Conditions for Graphs to be (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Xu, Zurun
    Zong, Minggang
    ARS COMBINATORIA, 2011, 102 : 11 - 20
  • [6] Minimum Degree, Independence Number and (a, b, k)-Critical Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2013, 108 : 425 - 430
  • [7] Binding numbers for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (02): : 115 - 121
  • [8] Binding Numbers for all Fractional (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Sun, Zhiren
    FILOMAT, 2014, 28 (04) : 709 - 713
  • [9] Degree conditions for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Xu, Yang
    Sun, Zhiren
    INFORMATION PROCESSING LETTERS, 2019, 152
  • [10] INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS
    Yuan, Yuan
    Hao, Rong-Xia
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 183 - 190