On the Zakharov-L'vov Stochastic Model for Wave Turbulence

被引:9
|
作者
Dymov, A., V [1 ]
Kuksin, S. B. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] Univ Paris Diderot Paris 7, F-75205 Paris, France
[3] Shandong Univ, Sch Math, Jinan, Peoples R China
[4] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
wave turbulence; energy spectrum; wave kinetic equation; kinetic limit; nonlinear Schrodinger equation; stochastic perturbation;
D O I
10.1134/S1064562420020106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss a number of rigorous results in the stochastic model for wave turbulence due to Zakharov-L'vov. Namely, we consider the damped/driven (modified) cubic nonlinear Schrodinger equation on a large torus and decompose its solutions to formal series in the amplitude. We show that when the amplitude goes to zero and the torus' size goes to infinity the energy spectrum of the quadratic truncation of this series converges to a solution of the damped/driven wave kinetic equation. Next we discuss higher order truncations of the series.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 50 条