On the Zakharov-L'vov Stochastic Model for Wave Turbulence

被引:9
|
作者
Dymov, A., V [1 ]
Kuksin, S. B. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] Univ Paris Diderot Paris 7, F-75205 Paris, France
[3] Shandong Univ, Sch Math, Jinan, Peoples R China
[4] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
wave turbulence; energy spectrum; wave kinetic equation; kinetic limit; nonlinear Schrodinger equation; stochastic perturbation;
D O I
10.1134/S1064562420020106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss a number of rigorous results in the stochastic model for wave turbulence due to Zakharov-L'vov. Namely, we consider the damped/driven (modified) cubic nonlinear Schrodinger equation on a large torus and decompose its solutions to formal series in the amplitude. We show that when the amplitude goes to zero and the torus' size goes to infinity the energy spectrum of the quadratic truncation of this series converges to a solution of the damped/driven wave kinetic equation. Next we discuss higher order truncations of the series.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 50 条
  • [31] Wave model of turbulence in a mixing layer
    Leontyev, A. E.
    TECHNICAL PHYSICS LETTERS, 2013, 39 (01) : 134 - 136
  • [32] Wave model of turbulence in a mixing layer
    A. E. Leontyev
    Technical Physics Letters, 2013, 39 : 134 - 136
  • [33] Justification of the Zakharov model from Klein-Gordon-wave systems
    Colin, T
    Ebrard, G
    Gallice, G
    Texier, B
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (9-10) : 1365 - 1401
  • [34] A stochastic wave propagation model
    Kim, T.
    Zhang, H. M.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2008, 42 (7-8) : 619 - 634
  • [35] A stochastic model of cascades in two-dimensional turbulence
    Ditlevsen, Peter D.
    PHYSICS OF FLUIDS, 2012, 24 (10)
  • [36] Stochastic parameterization of the time-relaxation model of turbulence
    Olson, Eric
    RESULTS IN APPLIED MATHEMATICS, 2020, 8
  • [37] Stochastic dynamical model of intermittency in fully developed turbulence
    Salazar, Domingos S. P.
    Vasconcelos, Giovani L.
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [38] Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model
    Mostafa M. A. Khater
    A. A. Mousa
    M. A. El-Shorbagy
    Raghda A. M. Attia
    The European Physical Journal Plus, 136
  • [39] Generation of Longmuir turbulence and stochastic acceleration in laser beat wave process
    Sharma, Prerana
    Sharma, R. P.
    LASER AND PARTICLE BEAMS, 2010, 28 (02) : 285 - 292
  • [40] Asymptotic behavior in a model of dispersive wave turbulence
    Jordan, R
    Josserand, C
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 429 - 447