Unique response Roman domination in graphs

被引:10
|
作者
Targhi, E. Ebrahimi [1 ]
Rad, N. Jafari [1 ]
Volkmann, L. [2 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination;
D O I
10.1016/j.dam.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f : V(G) -> {0, 1, 2} is a Roman dominating function if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A function f : v(G) -> {0, 1, 2} with the ordered partition (V-0, V-1. V-2) of V(G), where V-i ={v is an element of V(G) | f(v) = i} for i = 0, 1, 2, is a unique response Roman function if X E V0 implies |N(x) boolean AND V-2| <= 1 and x is an element of V-1 boolean OR V-2 implies that |N(x) boolean AND V-2| = 0. A function f : V (G) -> {0, 1, 2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by u(R)(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1110 / 1117
页数:8
相关论文
共 50 条
  • [41] Edge roman domination in graphs
    Pushpam, P. Roushini Leely
    Malini Mai, T.N.M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 69 : 175 - 182
  • [42] Edge Roman Domination on Graphs
    Gerard J. Chang
    Sheng-Hua Chen
    Chun-Hung Liu
    Graphs and Combinatorics, 2016, 32 : 1731 - 1747
  • [43] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [44] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [45] From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
    Almerich-Chulia, Ana
    Cabrera Martinez, Abel
    Hernandez Mira, Frank Angel
    Martin-Concepcion, Pedro
    SYMMETRY-BASEL, 2021, 13 (07):
  • [46] Unique total domination graphs
    Fischermann, M
    ARS COMBINATORIA, 2004, 73 : 289 - 297
  • [47] On 2-rainbow domination and Roman domination in graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 85 - 93
  • [48] Unique response strong Roman dominating functions of graphs
    Mojdeh, Doost Ali
    Hao, Guoliang
    Masoumi, Iman
    Parsian, Ali
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 469 - 484
  • [49] Relations between the Roman k-domination and Roman domination numbers in graphs
    Bouchou, Ahmed
    Blidia, Mostafa
    Chellali, Mustapha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [50] Chromatic transversal Roman domination in graphs
    Pushpam, P. Roushini Leely
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 51 - 66