Unique response Roman domination in graphs

被引:10
|
作者
Targhi, E. Ebrahimi [1 ]
Rad, N. Jafari [1 ]
Volkmann, L. [2 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination;
D O I
10.1016/j.dam.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f : V(G) -> {0, 1, 2} is a Roman dominating function if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A function f : v(G) -> {0, 1, 2} with the ordered partition (V-0, V-1. V-2) of V(G), where V-i ={v is an element of V(G) | f(v) = i} for i = 0, 1, 2, is a unique response Roman function if X E V0 implies |N(x) boolean AND V-2| <= 1 and x is an element of V-1 boolean OR V-2 implies that |N(x) boolean AND V-2| = 0. A function f : V (G) -> {0, 1, 2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by u(R)(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1110 / 1117
页数:8
相关论文
共 50 条
  • [21] RESTRAINED ROMAN DOMINATION IN GRAPHS
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 1 - 17
  • [22] Isolate Roman domination in graphs
    Bakhshesh, Davood
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [23] INVERSE ROMAN DOMINATION IN GRAPHS
    Kumar, M. Kamal
    Reddy, L. Sudershan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (03)
  • [24] A note on Roman domination in graphs
    Xing, Hua-Ming
    Chen, Xin
    Chen, Xue-Gang
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3338 - 3340
  • [25] Roman domination in unicyclic graphs
    Pushpam, P. Roushini Leely
    Mai, T. N. M. Malini
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (4-5): : 237 - 257
  • [26] Majority Roman domination in graphs
    Prabhavathy, S. Anandha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [27] Roman domination in regular graphs
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1528 - 1537
  • [28] On the double Roman domination of graphs
    Yue, Jun
    Wei, Meiqin
    Li, Min
    Liu, Guodong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 669 - 675
  • [29] Mixed Roman Domination in Graphs
    Ahangar, H. Abdollahzadeh
    Haynes, Teresa W.
    Valenzuela-Tripodoro, J. C.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1443 - 1454
  • [30] ROMAN DOMINATION STABILITY IN GRAPHS
    Amraee, Mehdi
    Rad, Nader Jafari
    Maghasedi, Mohammad
    MATHEMATICAL REPORTS, 2019, 21 (02): : 193 - 204