Unique response Roman domination in graphs

被引:10
|
作者
Targhi, E. Ebrahimi [1 ]
Rad, N. Jafari [1 ]
Volkmann, L. [2 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination;
D O I
10.1016/j.dam.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f : V(G) -> {0, 1, 2} is a Roman dominating function if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A function f : v(G) -> {0, 1, 2} with the ordered partition (V-0, V-1. V-2) of V(G), where V-i ={v is an element of V(G) | f(v) = i} for i = 0, 1, 2, is a unique response Roman function if X E V0 implies |N(x) boolean AND V-2| <= 1 and x is an element of V-1 boolean OR V-2 implies that |N(x) boolean AND V-2| = 0. A function f : V (G) -> {0, 1, 2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by u(R)(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1110 / 1117
页数:8
相关论文
共 50 条
  • [31] On maximal Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Kuziak, Dorota
    Samodivkin, Vladimir
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1093 - 1102
  • [32] Resolving Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mahavir, B.
    Kamalam, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [33] Roman domination perfect graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 167 - 174
  • [34] Signed Roman domination in graphs
    H. Abdollahzadeh Ahangar
    Michael A. Henning
    Christian Löwenstein
    Yancai Zhao
    Vladimir Samodivkin
    Journal of Combinatorial Optimization, 2014, 27 : 241 - 255
  • [35] A note on Roman domination in graphs
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2010, 83 : 305 - 312
  • [36] On the double Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 1 - 7
  • [37] Locating Roman Domination in Graphs
    Rad, Nader Jafari
    Rahbani, Hadi
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2019, 110 : 203 - 222
  • [38] Roman domination in regular graphs
    Department of Computer Science, Dalian University of Technology, Dalian, 116024, China
    不详
    Discrete Math, 1600, 6 (1528-1537):
  • [39] Perfect Roman domination in graphs
    Banerjee, S.
    Keil, J. Mark
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 1 - 21
  • [40] Triple Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Alvarez, M. P.
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 391