Unique response Roman domination in graphs

被引:10
|
作者
Targhi, E. Ebrahimi [1 ]
Rad, N. Jafari [1 ]
Volkmann, L. [2 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination;
D O I
10.1016/j.dam.2011.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f : V(G) -> {0, 1, 2} is a Roman dominating function if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A function f : v(G) -> {0, 1, 2} with the ordered partition (V-0, V-1. V-2) of V(G), where V-i ={v is an element of V(G) | f(v) = i} for i = 0, 1, 2, is a unique response Roman function if X E V0 implies |N(x) boolean AND V-2| <= 1 and x is an element of V-1 boolean OR V-2 implies that |N(x) boolean AND V-2| = 0. A function f : V (G) -> {0, 1, 2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by u(R)(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1110 / 1117
页数:8
相关论文
共 50 条
  • [1] The unique response Roman domination in Trees
    Zhao, Ning
    Li, WanKai
    Zhao, Taiyin
    Zhang, Zhiqiang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2018, 105 : 165 - 183
  • [2] Unique Response Roman Domination: Complexity and Algorithms
    Sumanta Banerjee
    Juhi Chaudhary
    Dinabandhu Pradhan
    Algorithmica, 2023, 85 : 3889 - 3927
  • [3] Unique Response Roman Domination: Complexity and Algorithms
    Banerjee, Sumanta
    Chaudhary, Juhi
    Pradhan, Dinabandhu
    ALGORITHMICA, 2023, 85 (12) : 3889 - 3927
  • [4] Roman domination in graphs
    University of Victoria, Victoria, BC, V8W 3P4, Canada
    不详
    不详
    1600, 11-22 (March 6, 2004):
  • [5] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [6] Trees with strong equality between the Roman domination number and the unique response Roman domination number
    Rad, Nader Jafari
    Liu, Chun-Hung
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 133 - 140
  • [7] Roman and inverse Roman domination in graphs
    Zaman, Zulfiqar
    Kumar, M. Kamal
    Ahmad, Saad Salman
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 142 - 150
  • [8] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [9] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [10] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255