Spectral unmixing and image classification supported by spatial knowledge

被引:1
|
作者
Zhang, B [1 ]
Zhang, X [1 ]
Liu, LY [1 ]
Zheng, L [1 ]
Tong, QX [1 ]
机构
[1] Chinese Acad Sci, Lab Remote Sensing Informat Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
来源
MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS | 2003年 / 4897卷
关键词
hyperspectral data; spectral unmixing; thematic map;
D O I
10.1117/12.467408
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Usually the spectral unmixing and endmember extraction were based on the spectral statistics algorithm. In this paper, spatial knowledge, such as field patch information, was involved in the pure pixel selecting. In this way, endmember extraction was not only carried out in spectral space but also considering the spatial location of pixels. In addition, these known background information can also improve the accuracy of image classification, and also can be used to. intellectually separate pixels and evaluate each sub-pixels different attributes.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 50 条
  • [41] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929
  • [42] Spectral-Spatial Unified Networks for Hyperspectral Image Classification
    Xu, Yonghao
    Zhang, Liangpei
    Du, Bo
    Zhang, Fan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5893 - 5909
  • [43] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [44] A spatial-spectral SIFT for hyperspectral image matching and classification
    Li, Yanshan
    Li, Qingteng
    Liu, Yan
    Xie, Weixin
    PATTERN RECOGNITION LETTERS, 2019, 127 : 18 - 26
  • [45] Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification
    Fang, Jie
    Zhong, Yulu
    Cao, Xiaoqian
    Wang, Dianwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [46] Joint spatial and spectral analysis for remote sensing image classification
    Zheng, Hao
    Shen, Linlin
    Jia, Sen
    MIPPR 2011: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2011, 8002
  • [47] Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
    Lin, Zhouhan
    Chen, Yushi
    Zhao, Xing
    Wang, Gang
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [48] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [49] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [50] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375