Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification

被引:3
|
作者
Fang, Jie [1 ]
Zhu, Zhijie [1 ]
He, Guanghua [1 ]
Wang, Nan [2 ]
Cao, Xiaoqian [3 ]
机构
[1] Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Encoding; Feature extraction; Collaboration; Convolutional neural networks; Training; Data preprocessing; Band selection (BS); collaborative decision-making; hyperspectral image classification; spatial-spectral decoupling (SD); NETWORK; CNN;
D O I
10.1109/LGRS.2023.3277347
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a spatial-spectral decoupling framework (SDF) to improve the performance of hyperspectral image classification, it mainly contains three modules, including data preprocessing, feature representation, and collaborative decision-making. Specifically, the data preprocessing module based on band selection (BS) network can effectively emphasize useful spectral bands while suppressing redundant ones. Besides, the feature representation module is based on spatial-spectral decoupling (SD) network to avoid information confusion between the spatial and the spectral domains. In addition, the collaborative decision-making mechanism based on joint optimization can maintain the discriminative properties of different branches and enhance mutual facilitation among them. Finally, the experimental results validate the effectiveness and superiority of our SDF.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [1] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [2] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [3] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [4] Spectral Similarity Based Multiscale Spatial-Spectral Preprocessing Framework for Hyperspectral Image Classification
    Akyurek, Hasan Ali
    Kocer, Baris
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1763 - 1779
  • [5] A spatial-spectral SIFT for hyperspectral image matching and classification
    Li, Yanshan
    Li, Qingteng
    Liu, Yan
    Xie, Weixin
    PATTERN RECOGNITION LETTERS, 2019, 127 : 18 - 26
  • [6] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [7] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [8] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [9] Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Li, Lei
    Yin, Jihao
    Jia, Xiuping
    Li, Sen
    Han, Bingnan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1816 - 1820
  • [10] CLASSIFICATION OF HYPERSPECTRAL IMAGE VIA SPATIAL-SPECTRAL MANIFOLD RECONSTRUCTION
    Yang, Yaqiong
    Huang, Hong
    Luo, Fulin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2442 - 2445