Spectral-Spatial Rotation Forest for Hyperspectral Image Classification

被引:15
|
作者
Xia, Junshi [1 ,2 ,3 ]
Bombrun, Lionel [4 ,5 ]
Berthoumieu, Yannick [6 ]
Germain, Christian [4 ,5 ]
Du, Peijun [7 ,8 ]
机构
[1] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1138654, Japan
[2] Univ Bordeaux, Bordeaux INP, F-33405 Talence, France
[3] Univ Bordeaux, CNRS, Lab IMS, UMR 5218, F-33405 Talence, France
[4] Univ Bordeaux, CNRS, IMS, UMR 5218, F-33405 Talence, France
[5] Bordeaux Sci Agro, F-33175 Gradignan, France
[6] Univ Bordeaux, CNRS, INP, IMS,UMR 5218, F-33405 Talence, France
[7] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Natl Adm Surveying Mapping & Geoinformat China, Key Lab Satellite Mapping Technol & Applicat,Jian, Nanjing 210023, Jiangsu, Peoples R China
[8] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Natl Adm Surveying Mapping & Geoinformat China, Key Lab Satellite Mapping Technol & Applicat,Coll, Nanjing 210023, Jiangsu, Peoples R China
关键词
Classification ensemble; hyperspectral images (HSIs); rotation forest (RoF); spectral-spatial transformation; FEATURE-EXTRACTION; REDUCTION; ENSEMBLES;
D O I
10.1109/JSTARS.2017.2720259
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rotation Forest (RoF) is a recent powerful decision tree (DT) ensemble classifier of hyperspectral images. RoF exploits random feature selection and data transformation techniques to improve both the diversity and accuracy of DT classifiers. Conventional RoF only considers data transformation on spectral information. To overcome this limitation, we propose a spectral and spatial RoF (SSRoF), to further improve the performance. In SSRoF, pixels are first smoothed by the multiscale (MS) spatial weight mean filtering. Then, spectral-spatial data transformation, which is based on a joint spectral and spatial rotation matrix, is introduced into the RoF. Finally, classification results obtained from each scale are integrated by a majority voting rule. Experimental results on two datasets indicate the competitive performance of the proposed method when compared to other state-of-the-art methods.
引用
收藏
页码:4605 / 4613
页数:9
相关论文
共 50 条
  • [1] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [2] Hyperspectral Image Analysis by Spectral-Spatial Processing and Anticipative Hybrid Extreme Rotation Forest Classification
    Ayerdi, Borja
    Grana Romay, Manuel
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05): : 2627 - 2639
  • [3] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    [J]. REMOTE SENSING, 2017, 9 (03):
  • [4] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [5] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    [J]. REMOTE SENSING, 2024, 16 (13)
  • [6] Hyperspectral Image Classification Based on Deep Forest and Spectral-Spatial Cooperative Feature
    Li, Mingyang
    Zhang, Ning
    Pan, Bin
    Xie, Shaobiao
    Wu, Xi
    Shi, Zhenwei
    [J]. IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 325 - 336
  • [7] Spectral-Spatial Hyperspectral Image Classification Based on Homogeneous Minimum Spanning Forest
    Poorahangaryan, F.
    Ghassemian, H.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [8] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [9] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [10] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    [J]. REMOTE SENSING, 2019, 11 (08)