Fisher information regularization schemes for Wasserstein gradient flows

被引:28
|
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation
    Gianazza, Ugo
    Savare, Giuseppe
    Toscani, Giuseppe
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (01) : 133 - 220
  • [2] The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation
    Ugo Gianazza
    Giuseppe Savaré
    Giuseppe Toscani
    Archive for Rational Mechanics and Analysis, 2009, 194 : 133 - 220
  • [3] THE GRADIENT FLOW OF A GENERALIZED FISHER INFORMATION FUNCTIONAL WITH RESPECT TO MODIFIED WASSERSTEIN DISTANCES
    Zinsl, Jonathan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04): : 919 - 933
  • [4] Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces
    Legendre, Guillaume
    Turinici, Gabriel
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (03) : 345 - 353
  • [5] Approximate Inference with Wasserstein Gradient Flows
    Frogner, Charlie
    Poggio, Tomaso
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2581 - 2589
  • [6] Policy Optimization as Wasserstein Gradient Flows
    Zhang, Ruiyi
    Chen, Changyou
    Li, Chunyuan
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [7] Entropic Approximation of Wasserstein Gradient Flows
    Peyre, Gabriel
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2323 - 2351
  • [8] Wasserstein Gradient Flow of the Fisher Information from a Non-Smooth Convex Minimization Viewpoint
    Carlier, Guillaume
    Benamou, Jean-David
    Matthes, Daniel
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 359 - 378
  • [9] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [10] {Euclidean, metric, and Wasserstein} gradient flows: an overview
    Santambrogio, Filippo
    BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (01) : 87 - 154