The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation

被引:0
|
作者
Ugo Gianazza
Giuseppe Savaré
Giuseppe Toscani
机构
[1] Universita di Pavia,Dipartimento di Matematica “F. Casorati”
关键词
Fisher Information; Lower Semicontinuity; Relative Entropy; Planck Equation; Logarithmic Sobolev Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the global existence of non-negative variational solutions to the “drift diffusion” evolution equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\partial_t} u+ div \left(u{\mathrm{D}}\left(2 \frac{\Delta \sqrt u}{\sqrt u}-{f}\right)\right)=0}$$\end{document} under variational boundary condition. Despite the lack of a maximum principle for fourth order equations, non-negative solutions can be obtained as a limit of a variational approximation scheme by exploiting the particular structure of this equation, which is the gradient flow of the (perturbed) Fisher information functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f(u):=\frac 12\int \left|{\mathrm{D}} \log u\right|^2 {u} dx+\int fu dx}$$\end{document} with respect to the Kantorovich–Rubinstein–Wasserstein distance between probability measures. We also study long-time behavior of the solutions, proving their exponential decay to the equilibrium state g = e−V characterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\Delta V+\frac12 \left|{\mathrm{D}} V\right|^2=f,\quad \int {\rm e}^{-V} dx=\int u_{0}dx,}$$\end{document} when the potential V is uniformly convex: in this case the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f}$$\end{document} coincides with the relative Fisher information\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f(u)=\frac12\fancyscript I(u|g)= \int \left|{\mathrm{D}}\log(u/g)\right|^2u dx}$$\end{document}.
引用
收藏
页码:133 / 220
页数:87
相关论文
共 50 条
  • [1] The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation
    Gianazza, Ugo
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (01) : 133 - 220
  • [2] The drift-diffusion equation revisited
    Assad, F
    Banoo, K
    Lundstrom, M
    [J]. SOLID-STATE ELECTRONICS, 1998, 42 (03) : 283 - 295
  • [3] Numerical methods for a quantum drift-diffusion equation in semiconductor physics
    Escobedo, Ramon
    Bonilla, Luis L.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (01) : 3 - 13
  • [4] Theoretical foundations of the quantum drift-diffusion and density-gradient models
    Baccarani, Giorgio
    Gnani, Elena
    Gnudi, Antonio
    Reggiani, Susanna
    Rudan, Massimo
    [J]. SOLID-STATE ELECTRONICS, 2008, 52 (04) : 526 - 532
  • [5] Drift-diffusion equation for suspended sediment
    Zhong, DY
    Zhang, HW
    [J]. PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON RIVER SEDIMENTATION, VOLS 1-4, 2004, : 1391 - 1394
  • [6] Schrodinger Equation Based Quantum Corrections in Drift-Diffusion: A Multiscale Approach
    Dutta, Tapas
    Medina-Bailon, Cristina
    Carrillo-Nunez, Hamilton
    Badami, Oves
    Georgiev, Vihar
    Asenov, Asen
    [J]. 2019 IEEE 14TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2019,
  • [7] FROM A MULTIDIMENSIONAL QUANTUM HYDRODYNAMIC MODEL TO THE CLASSICAL DRIFT-DIFFUSION EQUATION
    Li, Yeping
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (03) : 489 - 502
  • [8] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [9] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    [J]. Acta Mathematica Sinica, English Series, 2009, 25
  • [10] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250