The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation

被引:0
|
作者
Ugo Gianazza
Giuseppe Savaré
Giuseppe Toscani
机构
[1] Universita di Pavia,Dipartimento di Matematica “F. Casorati”
关键词
Fisher Information; Lower Semicontinuity; Relative Entropy; Planck Equation; Logarithmic Sobolev Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the global existence of non-negative variational solutions to the “drift diffusion” evolution equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\partial_t} u+ div \left(u{\mathrm{D}}\left(2 \frac{\Delta \sqrt u}{\sqrt u}-{f}\right)\right)=0}$$\end{document} under variational boundary condition. Despite the lack of a maximum principle for fourth order equations, non-negative solutions can be obtained as a limit of a variational approximation scheme by exploiting the particular structure of this equation, which is the gradient flow of the (perturbed) Fisher information functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f(u):=\frac 12\int \left|{\mathrm{D}} \log u\right|^2 {u} dx+\int fu dx}$$\end{document} with respect to the Kantorovich–Rubinstein–Wasserstein distance between probability measures. We also study long-time behavior of the solutions, proving their exponential decay to the equilibrium state g = e−V characterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\Delta V+\frac12 \left|{\mathrm{D}} V\right|^2=f,\quad \int {\rm e}^{-V} dx=\int u_{0}dx,}$$\end{document} when the potential V is uniformly convex: in this case the functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f}$$\end{document} coincides with the relative Fisher information\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript F^f(u)=\frac12\fancyscript I(u|g)= \int \left|{\mathrm{D}}\log(u/g)\right|^2u dx}$$\end{document}.
引用
收藏
页码:133 / 220
页数:87
相关论文
共 50 条
  • [21] Quantum drift-diffusion model for IMPATT devices
    Aritra Acharyya
    Subhashri Chatterjee
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    [J]. Journal of Computational Electronics, 2014, 13 : 739 - 752
  • [22] The semiclassical limit in the quantum drift-diffusion model
    Qiang Chang Ju
    [J]. Acta Mathematica Sinica, English Series, 2009, 25 : 253 - 264
  • [23] Quantum drift-diffusion model for IMPATT devices
    Acharyya, Aritra
    Chatterjee, Subhashri
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 739 - 752
  • [24] Drift-diffusion in mangled worlds quantum mechanics
    Hanson, RD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2069): : 1619 - 1627
  • [25] The semiclassical limit in the quantum drift-diffusion model
    Ju, Qiang Chang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (02) : 253 - 264
  • [26] The Multidimensional Bipolar Quantum Drift-diffusion Model
    Chen, Xiuqing
    Guo, Yingchun
    [J]. ADVANCED NONLINEAR STUDIES, 2008, 8 (04) : 799 - 816
  • [27] The Dirichlet problem of the quantum drift-diffusion model
    Chen, Xiuqing
    Chen, Li
    Jian, Huaiyu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 3084 - 3092
  • [28] The Semiclassical Limit in the Quantum Drift-Diffusion Model
    Qiang Chang JUInstitute of Applied Physics and Computational Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2009, 25 (02) : 253 - 264
  • [29] Numerical approximation of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 519 - 524
  • [30] The quasineutral limit in the quantum drift-diffusion equations
    Juengel, Ansgar
    Violet, Ingrid
    [J]. ASYMPTOTIC ANALYSIS, 2007, 53 (03) : 139 - 157