Fisher information regularization schemes for Wasserstein gradient flows

被引:28
|
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] WASSERSTEIN GRADIENT FLOWS FROM LARGE DEVIATIONS OF MANY-PARTICLE LIMITS
    Manh Hong Duong
    Laschos, Vaios
    Renger, Michiel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (04) : 1166 - 1188
  • [42] Stochastic Wasserstein Gradient Flows using Streaming Data with an Application in Predictive Maintenance
    Lanzetti, Nicolas
    Balta, Efe C.
    Liao-McPherson, Dominic
    Dorfler, Florian
    IFAC PAPERSONLINE, 2023, 56 (02): : 3954 - 3959
  • [43] VARIATIONAL EXTRAPOLATION OF IMPLICIT SCHEMES FOR GENERAL GRADIENT FLOWS
    Zaitzeff, Alexander
    Esedoglu, Selim
    Garikipati, Krishna
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2799 - 2817
  • [44] CONVERGENCE OF ENTROPIC SCHEMES FOR OPTIMAL TRANSPORT AND GRADIENT FLOWS
    Carlier, Guillaume
    Duval, Vincent
    Peyre, Gabriel
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1385 - 1418
  • [45] Wasserstein Hamiltonian flows
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 1205 - 1219
  • [46] Regularization for Wasserstein distributionally robust optimization
    Azizian, Waiss
    Iutzeler, Franck
    Malick, Jerome
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [47] A CANONICAL BARYCENTER VIA WASSERSTEIN REGULARIZATION
    Kim, Young-Heon
    Pass, Brendan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 1817 - 1828
  • [48] A JKO SPLITTING SCHEME FOR KANTOROVICH-FISHER-RAO GRADIENT FLOWS
    Gallouet, Thomas O.
    Monsaingeon, Leonard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1100 - 1130
  • [49] One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces
    Martial Agueh
    Malcolm Bowles
    Acta Applicandae Mathematicae, 2013, 125 : 121 - 134
  • [50] Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows
    Crucinio, Francesca R.
    De Bortoli, Valentin
    Doucet, Arnaud
    Johansen, Adam M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 173