Fisher information regularization schemes for Wasserstein gradient flows

被引:28
|
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
    Ziesche, Hanna
    Rozo, Leonel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Regularization of linear approximate schemes by the gradient descent
    Izmailov, AF
    Karmanov, VG
    Tretyakov, AA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 250 - 263
  • [23] High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems
    Fu, Guosheng
    Osher, Stanley
    Li, Wuchen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [24] From large deviations to Wasserstein gradient flows in multiple dimensions
    Erbar, Matthias
    Maas, Jan
    Renger, D. R. Michiel
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 12
  • [25] Finsler structure in the p-Wasserstein space and gradient flows
    Agueh, Martial
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 35 - 40
  • [26] GRADIENT FLOWS ON WASSERSTEIN SPACES OVER COMPACT ALEXANDROV SPACES
    Ohta, Shin-ichi
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (02) : 475 - 516
  • [27] KRAMERS' FORMULA FOR CHEMICAL REACTIONS IN THE CONTEXT OF WASSERSTEIN GRADIENT FLOWS
    Herrmann, Michael
    Niethammer, Barbara
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (02) : 623 - 635
  • [28] LEARNING GAUSSIAN MIXTURES USING THE WASSERSTEIN-FISHER-RAO GRADIENT FLOW
    Yan, Yuling
    Wang, Kaizheng
    Rigollet, Philippe
    ANNALS OF STATISTICS, 2024, 52 (04): : 1774 - 1795
  • [29] Fisher information in progressive hybrid censoring schemes
    Park, Sangun
    Balakrishnan, N.
    Kim, Seong W.
    STATISTICS, 2011, 45 (06) : 623 - 631
  • [30] Computations of Optimal Transport Distance with Fisher Information Regularization
    Wuchen Li
    Penghang Yin
    Stanley Osher
    Journal of Scientific Computing, 2018, 75 : 1581 - 1595