Local formula for the Z2 invariant of topological insulators

被引:8
|
作者
Li, Zhi [1 ]
Mong, Roger S. K.
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
关键词
STABLE-HOMOTOPY;
D O I
10.1103/PhysRevB.100.205101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed a formula for the Z(2) invariant for topological insulators, which remains valid without translational invariance. Our formula is a local expression, in the sense that the contributions mainly come from quantities near a point. Using almost commute matrices, we proposed a method to approximate this invariant with local information. The validity of the formula and the approximation method is proved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On the Z2 topological invariant
    Drissi, L. B.
    Saidi, E. H.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [2] Plasmons in Z2 topological insulators
    Guan, Yuling
    Haas, Stephan
    Schloemer, Henning
    Jiang, Zhihao
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [3] Z2 anomaly and boundaries of topological insulators
    Ringel, Zohar
    Stern, Ady
    [J]. PHYSICAL REVIEW B, 2013, 88 (11):
  • [4] Photonic Z2 Topological Anderson Insulators
    Cui, Xiaohan
    Zhang, Ruo-Yang
    Zhang, Zhao-Qing
    Chan, C. T.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [5] Wannier representation of Z2 topological insulators
    Soluyanov, Alexey A.
    Vanderbilt, David
    [J]. PHYSICAL REVIEW B, 2011, 83 (03):
  • [6] Transport in Z2 invariant in one and two-dimensional topological insulators models
    Lima, Leonardo S.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 113 : 208 - 212
  • [7] Z2 fractional topological insulators in two dimensions
    Repellin, C.
    Bernevig, B. Andrei
    Regnault, N.
    [J]. PHYSICAL REVIEW B, 2014, 90 (24)
  • [8] Z2 Topological Insulators in Ultracold Atomic Gases
    Beri, B.
    Cooper, N. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [9] Z2 Invariants of Topological Insulators as Geometric Obstructions
    Fiorenza, Domenico
    Monaco, Domenico
    Panati, Gianluca
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 1115 - 1157
  • [10] Interaction correction to the magnetoelectric polarizability of Z2 topological insulators
    Everschor-Sitte, Karin
    Sitte, Matthias
    MacDonald, Allan H.
    [J]. PHYSICAL REVIEW B, 2015, 92 (24):