Z2 fractional topological insulators in two dimensions

被引:26
|
作者
Repellin, C. [1 ,2 ]
Bernevig, B. Andrei [3 ]
Regnault, N. [1 ,2 ,3 ]
机构
[1] ENS, Lab Pierre Aigrain, F-75005 Paris, France
[2] CNRS, F-75005 Paris, France
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
关键词
D O I
10.1103/PhysRevB.90.245401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a simple microscopic model to numerically investigate the stability of a two-dimensional fractional topological insulator (FTI). The simplest example of an FTI consists of two decoupled copies of a Laughlin state with opposite chiralities, or double-semion phase. We focus on bosons at half filling. We study the stability of the FTI phase upon addition of two coupling terms of different nature: an interspin interaction term, and an inversionsymmetry- breaking term that couples the copies at the single-particle level. Using exact-diagonalization and entanglement spectra, we numerically show that the FTI phase is stable against both perturbations. We compare our system to a similar bilayer fractional Chern insulator. We show evidence that the time-reversal-invariant system survives the introduction of interaction coupling on a larger scale than the time-reversal-symmetry-breaking one, stressing the importance of time-reversal symmetry in the FTI phase stability. We also discuss possible fractional phases beyond nu = 1/2.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Interacting and fractional topological insulators via the Z2 chiral anomaly
    Koch-Janusz, Maciej
    Ringel, Zohar
    [J]. PHYSICAL REVIEW B, 2014, 89 (07)
  • [2] Plasmons in Z2 topological insulators
    Guan, Yuling
    Haas, Stephan
    Schloemer, Henning
    Jiang, Zhihao
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [3] Z2 anomaly and boundaries of topological insulators
    Ringel, Zohar
    Stern, Ady
    [J]. PHYSICAL REVIEW B, 2013, 88 (11):
  • [4] Photonic Z2 Topological Anderson Insulators
    Cui, Xiaohan
    Zhang, Ruo-Yang
    Zhang, Zhao-Qing
    Chan, C. T.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [5] Wannier representation of Z2 topological insulators
    Soluyanov, Alexey A.
    Vanderbilt, David
    [J]. PHYSICAL REVIEW B, 2011, 83 (03):
  • [6] Identifying Two-Dimensional Z2 Antiferromagnetic Topological Insulators
    F. Bègue
    P. Pujol
    R. Ramazashvili
    [J]. Journal of Experimental and Theoretical Physics, 2018, 126 : 90 - 105
  • [7] Local formula for the Z2 invariant of topological insulators
    Li, Zhi
    Mong, Roger S. K.
    [J]. PHYSICAL REVIEW B, 2019, 100 (20)
  • [8] Z2 Topological Insulators in Ultracold Atomic Gases
    Beri, B.
    Cooper, N. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [9] Z2 Invariants of Topological Insulators as Geometric Obstructions
    Fiorenza, Domenico
    Monaco, Domenico
    Panati, Gianluca
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 1115 - 1157
  • [10] Relative Abundance of Z2 Topological Order in Exfoliable Two-Dimensional Insulators
    Marrazzo, Antimo
    Gibertini, Marco
    Campi, Davide
    Mounet, Nicolas
    Marzari, Nicola
    [J]. NANO LETTERS, 2019, 19 (12) : 8431 - 8440