Z2 Invariants of Topological Insulators as Geometric Obstructions

被引:0
|
作者
Fiorenza, Domenico [1 ]
Monaco, Domenico [2 ]
Panati, Gianluca [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] SISSA, Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
关键词
BLOCH;
D O I
10.1007/s00220-015-2552-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to . We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a -valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
引用
收藏
页码:1115 / 1157
页数:43
相关论文
共 50 条
  • [1] Plasmons in Z2 topological insulators
    Guan, Yuling
    Haas, Stephan
    Schloemer, Henning
    Jiang, Zhihao
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [2] Wannier functions and Z2 invariants in time-reversal symmetric topological insulators
    Cornean, Horia D.
    Monaco, Domenico
    Teufel, Stefan
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (02)
  • [3] Z2 anomaly and boundaries of topological insulators
    Ringel, Zohar
    Stern, Ady
    [J]. PHYSICAL REVIEW B, 2013, 88 (11):
  • [4] Photonic Z2 Topological Anderson Insulators
    Cui, Xiaohan
    Zhang, Ruo-Yang
    Zhang, Zhao-Qing
    Chan, C. T.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [5] Wannier representation of Z2 topological insulators
    Soluyanov, Alexey A.
    Vanderbilt, David
    [J]. PHYSICAL REVIEW B, 2011, 83 (03):
  • [6] Scaling theory of Z2 topological invariants
    Chen, Wei
    Sigrist, Manfred
    Schnyder, Andreas P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (36)
  • [7] Z2 fractional topological insulators in two dimensions
    Repellin, C.
    Bernevig, B. Andrei
    Regnault, N.
    [J]. PHYSICAL REVIEW B, 2014, 90 (24)
  • [8] Local formula for the Z2 invariant of topological insulators
    Li, Zhi
    Mong, Roger S. K.
    [J]. PHYSICAL REVIEW B, 2019, 100 (20)
  • [9] Z2 Topological Insulators in Ultracold Atomic Gases
    Beri, B.
    Cooper, N. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [10] Interaction correction to the magnetoelectric polarizability of Z2 topological insulators
    Everschor-Sitte, Karin
    Sitte, Matthias
    MacDonald, Allan H.
    [J]. PHYSICAL REVIEW B, 2015, 92 (24):