Z2 Invariants of Topological Insulators as Geometric Obstructions

被引:0
|
作者
Fiorenza, Domenico [1 ]
Monaco, Domenico [2 ]
Panati, Gianluca [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] SISSA, Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
关键词
BLOCH;
D O I
10.1007/s00220-015-2552-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to . We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a -valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
引用
收藏
页码:1115 / 1157
页数:43
相关论文
共 50 条
  • [21] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Linhu Li
    Chao Yang
    Shu Chen
    [J]. The European Physical Journal B, 2016, 89
  • [22] Z2 antiferromagnetic topological insulators with broken C4 symmetry
    Begue, Frederic
    Pujol, Pierre
    Ramazashvili, Revaz
    [J]. PHYSICS LETTERS A, 2017, 381 (14) : 1268 - 1271
  • [23] Z2 fractionalized Chern/topological insulators in an exactly soluble correlated model
    Zhong, Yin
    Wang, Yu-Feng
    Luo, Hong-Gang
    [J]. PHYSICAL REVIEW B, 2013, 88 (04)
  • [24] Z2 topological invariants in two dimensions from quantum Monte Carlo
    Lang, Thomas C.
    Essin, Andrew M.
    Gurarie, Victor
    Wessel, Stefan
    [J]. PHYSICAL REVIEW B, 2013, 87 (20)
  • [25] On the Z2 topological invariant
    Drissi, L. B.
    Saidi, E. H.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [26] Z2 Photonic Topological Insulators in the Visible Wavelength Range for Robust Nanoscale Photonics
    Liu, Wenjing
    Hwang, Minsoo
    Ji, Zhurun
    Wang, Yuhui
    Modi, Gaurav
    Agarwal, Ritesh
    [J]. NANO LETTERS, 2020, 20 (02) : 1329 - 1335
  • [27] Relative Abundance of Z2 Topological Order in Exfoliable Two-Dimensional Insulators
    Marrazzo, Antimo
    Gibertini, Marco
    Campi, Davide
    Mounet, Nicolas
    Marzari, Nicola
    [J]. NANO LETTERS, 2019, 19 (12) : 8431 - 8440
  • [28] Symmetry-breaking topological insulators in the Z2 Bose-Hubbard model
    Gonzalez-Cuadra, Daniel
    Dauphin, Alexandre
    Grzybowski, Przemyslaw R.
    Wojcik, Pawel
    Lewenstein, Maciej
    Bermudez, Alejandro
    [J]. PHYSICAL REVIEW B, 2019, 99 (04)
  • [29] Transport in Z2 invariant in one and two-dimensional topological insulators models
    Lima, Leonardo S.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 113 : 208 - 212
  • [30] Topological Phases in AB-Stacked MoTe2/WSe2: Z2 Topological Insulators, Chern Insulators, and Topological Charge Density Waves
    Pan, Haining
    Xie, Ming
    Wu, Fengcheng
    Das Sarma, Sankar
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (05)