Local formula for the Z2 invariant of topological insulators

被引:10
|
作者
Li, Zhi [1 ]
Mong, Roger S. K.
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
关键词
STABLE-HOMOTOPY;
D O I
10.1103/PhysRevB.100.205101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed a formula for the Z(2) invariant for topological insulators, which remains valid without translational invariance. Our formula is a local expression, in the sense that the contributions mainly come from quantities near a point. Using almost commute matrices, we proposed a method to approximate this invariant with local information. The validity of the formula and the approximation method is proved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Z2 Topological Anderson Insulator
    Yamakage, Ai
    Nomura, Kentaro
    Imura, Ken-Ichiro
    Kuramoto, Yoshio
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [32] Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice
    Mei, Feng
    Zhu, Shi-Liang
    Zhang, Zhi-Ming
    Oh, C. H.
    Goldman, N.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [33] Realization of Z2 Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides
    Isoniemi, Tommi
    Bouteyre, Paul
    Hu, Xuerong
    Benimetskiy, Fedor
    Wang, Yue
    Skolnick, Maurice S.
    Krizhanovskii, Dmitry N.
    Tartakovskii, Alexander I.
    ACS NANO, 2024, 18 (47) : 32547 - 32555
  • [34] Real-space many-body marker for correlated Z2 topological insulators
    Gilardoni, Ivan
    Becca, Federico
    Marrazzo, Antimo
    Parola, Alberto
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [35] Fragility of Z2 topological invariant characterizing triplet excitations in a bilayer kagome magnet
    Thomasen, Andreas
    Penc, Karlo
    Shannon, Nic
    Romhanyi, Judit
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [36] Quantum phase transitions out of a Z2 x Z2 topological phase
    Jahromi, Saeed S.
    Masoudi, S. Farhad
    Kargarian, Mehdi
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [37] Emergent Z2 topological invariant and robust helical edge states in two-dimensional topological metals
    Chen, Chui-Zhen
    Jiang, Hua
    Xu, Dong-Hui
    Xie, X. C.
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (10)
  • [38] Z2 topological number of local quantum clusters in the orthogonal dimer model
    Maruyama, Isao
    Tanaya, Sho
    Arikawa, Mitsuhiro
    Hatsugai, Yasuhiro
    INTERNATIONAL CONFERENCE ON FRUSTRATION IN CONDENSED MATTER (ICFCM), 2011, 320
  • [39] Emergent Z2 topological invariant and robust helical edge states in two-dimensional topological metals
    Chui-Zhen Chen
    Hua Jiang
    Dong-Hui Xu
    X. C. Xie
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [40] Emergent Z2 topological invariant and robust helical edge states in two-dimensional topological metals
    Chui-Zhen Chen
    Hua Jiang
    Dong-Hui Xu
    X.C.Xie
    Science China(Physics,Mechanics & Astronomy), 2020, (10) : 109 - 114