Quantum phase transitions out of a Z2 x Z2 topological phase

被引:15
|
作者
Jahromi, Saeed S. [1 ,2 ]
Masoudi, S. Farhad [1 ]
Kargarian, Mehdi [3 ]
Schmidt, Kai Phillip [2 ]
机构
[1] KN Toosi Univ Technol, Dept Phys, Tehran, Iran
[2] TU Dortmund, Lehrstuhl Theoret Phys I, D-44221 Dortmund, Germany
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
关键词
TRIANGULAR LATTICE; HALL STATES; EXCITATIONS; DEGENERACY; ORDERS; MODEL;
D O I
10.1103/PhysRevB.88.214411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the low-energy spectral properties and robustness of the topological phase of color code, which is a quantum spin model for the aim of fault-tolerant quantum computation, in the presence of a uniform magnetic field or Ising interactions, using high-order series expansion and exact diagonalization. In a uniform magnetic field, we find first-order phase transitions in all field directions. In contrast, our results for the Ising interactions unveil that for strong enough Ising couplings, the Z(2) x Z(2) topological phase of color code breaks down to symmetry broken phases by first-or second-order phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantum phase transition from Z2 x Z2 to Z2 topological order (vol 93, 042306, 2016)
    Zarei, Mohammad Hossein
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [2] Designing Z2 and Z2 x Z2 topological orders in networks of Majorana bound states
    Mohammadi, Fatemeh
    Kargarian, Mehdi
    [J]. PHYSICAL REVIEW B, 2022, 105 (16)
  • [3] Z2 x Z2 symmetry and Z4 Berry phase of bosonic ladders
    Kuno, Yoshihito
    Hatsugai, Yasuhiro
    [J]. PHYSICAL REVIEW A, 2023, 108 (01)
  • [4] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    [J]. PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [5] Short-ranged interaction effects on Z2 topological phase transitions
    Lai, Hsin-Hua
    Hung, Hsiang-Hsuan
    Fiete, Gregory A.
    [J]. PHYSICAL REVIEW B, 2014, 90 (19)
  • [6] Topological Complex Charge Conservation in Nontrivial Z2 x Z2 Domain Walls
    Lee, Jhinhwan
    Park, Hae-Ryong
    Jin, Kyung-Hwan
    Kim, Jun Sung
    Cheong, Sang-Wook
    Yeom, Han-Woong
    [J]. ADVANCED MATERIALS, 2024, 36 (25)
  • [7] Quantum phase transitions in a bidimensional O(N) x Z2 scalar field model
    Heymans, Gustavo O.
    Pinto, Marcus Benghi
    Ramos, Rudnei O.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [8] Manipulation of quantum phase transitions with Z2 symmetry for a realistic hybrid system
    Yang, Shuang-Liang
    Lu, Dong-Yan
    Li, Xin-Ke
    Badshah, Fazal
    Jin, Long
    Fu, Yan-Hua
    Wang, Guang-Hui
    Dong, Yan-Zhang
    Zhou, Yuan
    [J]. RESULTS IN PHYSICS, 2022, 36
  • [9] On the Z2 topological invariant
    Drissi, L. B.
    Saidi, E. H.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [10] Coupled wire model of Z2 x Z2 orbifold quantum Hall states
    Tam, Pok Man
    Hu, Yichen
    Kane, Charles L.
    [J]. PHYSICAL REVIEW B, 2020, 101 (12)