Quantum phase transitions out of a Z2 x Z2 topological phase

被引:15
|
作者
Jahromi, Saeed S. [1 ,2 ]
Masoudi, S. Farhad [1 ]
Kargarian, Mehdi [3 ]
Schmidt, Kai Phillip [2 ]
机构
[1] KN Toosi Univ Technol, Dept Phys, Tehran, Iran
[2] TU Dortmund, Lehrstuhl Theoret Phys I, D-44221 Dortmund, Germany
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
关键词
TRIANGULAR LATTICE; HALL STATES; EXCITATIONS; DEGENERACY; ORDERS; MODEL;
D O I
10.1103/PhysRevB.88.214411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the low-energy spectral properties and robustness of the topological phase of color code, which is a quantum spin model for the aim of fault-tolerant quantum computation, in the presence of a uniform magnetic field or Ising interactions, using high-order series expansion and exact diagonalization. In a uniform magnetic field, we find first-order phase transitions in all field directions. In contrast, our results for the Ising interactions unveil that for strong enough Ising couplings, the Z(2) x Z(2) topological phase of color code breaks down to symmetry broken phases by first-or second-order phase transitions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] AN INFINITE SUBALGEBRA OF EXTA(Z2 Z2
    MAHOWALD, M
    TANGORA, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 263 - &
  • [32] RECURSION OPERATORS FOR RATIONAL BUNDLE ON sl (3; C) WITH Z2 x Z2 x Z2 REDUCTION OF MIKHAILOV TYPE
    Yanovski, Alexandar
    [J]. PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2015, : 301 - 311
  • [33] Z2 Topological Anderson Insulator
    Yamakage, Ai
    Nomura, Kentaro
    Imura, Ken-Ichiro
    Kuramoto, Yoshio
    [J]. 26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [34] Plasmons in Z2 topological insulators
    Guan, Yuling
    Haas, Stephan
    Schloemer, Henning
    Jiang, Zhihao
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [35] Z2 x Z2 Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
    Dong, Zhongtian
    Comajoan Cara, Marcal
    Dahale, Gopal Ramesh
    Forestano, Roy T.
    Gleyzer, Sergei
    Justice, Daniel
    Kong, Kyoungchul
    Magorsch, Tom
    Matchev, Konstantin T.
    Matcheva, Katia
    Unlu, Eyup B.
    [J]. AXIOMS, 2024, 13 (03)
  • [36] TheIdealStructureofC(X)XαZ2
    李炳仁
    林青
    [J]. ScienceinChina,Ser.A., 1993, Ser.A.1993 (09) - 1062
  • [37] Spectral Theory of sl(3, C) Auxiliary Linear Problem with Z2 x Z2 x Z2 Reduction of Mikhailov Type
    Yanovski, A. B.
    [J]. ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, 2017, 681 : 251 - 262
  • [38] Grand unification of flavor by orbifold twisting Z2 and Z2 x Z12
    Kim, JE
    [J]. FIRST INTERNATIONAL CONFERENCE ON STRING PHENOMENOLOGY, 2003, : 173 - 178
  • [39] Intersecting D-branes on shift Z2 x Z2 orientifolds
    Blumenhagen, Ralph
    Plauschinn, Erik
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):
  • [40] Towards machine learning in the classification of Z2 x Z2 orbifold compactifications
    Faraggi, A. E.
    Harries, G.
    Percival, B.
    Rizos, J.
    [J]. 6TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES - DISCRETE 2018, 2020, 1586