Generalized independence and domination in graphs

被引:4
|
作者
Borowiecki, M [1 ]
Michalak, D [1 ]
机构
[1] Tech Univ, Inst Math, PL-65246 Zielona Gora, Poland
关键词
dominating set; independent set; hereditary property of graphs; vertex partition;
D O I
10.1016/S0012-365X(98)00092-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce various concepts of P-domination, which generalize and unify different well-known kinds of domination in graphs. We generalize a result of Lovasz concerning the existence of a partition of a set of vertices of G into independent subsets and a result of Favaron concerning a property of S-k-dominating sets. Gallai-type equalities for the strong P-domination number are proved, which generalize Nieminen's result. Copyright (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [31] On the domination number of the generalized Petersen graphs
    Behzad, Arash
    Behzad, Mehdi
    Praeger, Cheryl E.
    DISCRETE MATHEMATICS, 2008, 308 (04) : 603 - 610
  • [32] Generalized weakly connected domination in graphs
    Peng, Mao
    Shen, Hao
    ARS COMBINATORIA, 2008, 89 : 345 - 353
  • [33] GENERALIZED POWER DOMINATION IN REGULAR GRAPHS
    Dorbec, Paul
    Henning, Michael A.
    Loewenstein, Christian
    Montassier, Mickael
    Raspaud, Andre
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (03) : 1559 - 1574
  • [34] Independence and connectivity in 3-domination-critical graphs
    Zhang, LZ
    Tian, F
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 227 - 236
  • [35] Independence and hamiltonicity in 3-domination-critical graphs
    Favaron, O
    Tian, F
    Zhang, L
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 173 - 184
  • [36] New Bounds on Domination and Independence in Graphs1
    Harant, Jochen
    Mohr, Samuel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (03) : 809 - 824
  • [37] CHORDAL GRAPHS AND UPPER IRREDUNDANCE, UPPER DOMINATION AND INDEPENDENCE
    JACOBSON, MS
    PETERS, K
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 59 - 69
  • [38] On k-domination and j-independence in graphs
    Hansberg, Adriana
    Pepper, Ryan
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1472 - 1480
  • [39] CHARACTERIZATION OF GRAPHS WITH EQUAL DOMINATION NUMBERS AND INDEPENDENCE NUMBERS
    Jou, Min-Jen
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1537 - 1542
  • [40] REGNANT AND CAPTIVE DOMINATION IN SOME GENERALIZED GRAPHS
    Arvind
    Mehra, Seema
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 34 : 87 - 99