Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [1] Hamiltonicity in 3-domination-critical graphs with α=δ+2
    Tian, F
    Wei, B
    Zhang, L
    DISCRETE APPLIED MATHEMATICS, 1999, 92 (01) : 57 - 70
  • [2] Independence and connectivity in 3-domination-critical graphs
    Zhang, LZ
    Tian, F
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 227 - 236
  • [3] Some properties of 3-domination-critical graphs
    Flandrin, E
    Tian, F
    Wei, B
    Zhang, L
    DISCRETE MATHEMATICS, 1999, 205 (1-3) : 65 - 76
  • [4] The 3-domination-critical graphs with toughness one
    Chen, YJ
    Tian, F
    Wei, B
    UTILITAS MATHEMATICA, 2002, 61 : 239 - 253
  • [5] Hamilton-connectivity of 3-domination-critical graphs with α≤δ
    Chen, YJ
    Tian, F
    Wei, B
    DISCRETE MATHEMATICS, 2003, 271 (1-3) : 1 - 12
  • [6] Matching and Factor-Critical Property in 3-Domination-Critical Graphs
    Wang, Tao
    Yu, Qinglin
    UTILITAS MATHEMATICA, 2010, 83 : 159 - 170
  • [7] Pancyclism of 3-domination-critical graphs with small minimum degree
    Shiu, W. C.
    Zhang, Lian-zhu
    UTILITAS MATHEMATICA, 2008, 75 : 175 - 192
  • [8] Hamiltonicity of Connected Domination Critical Graphs
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, W.
    ARS COMBINATORIA, 2018, 136 : 127 - 151
  • [9] Domination Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 279 - 282
  • [10] Hamiltonicity of Domination Vertex-Critical Claw-Free Graphs
    Kaemawichanurat, Pawaton
    ARS COMBINATORIA, 2020, 152 : 13 - 29