Generalized independence and domination in graphs

被引:4
|
作者
Borowiecki, M [1 ]
Michalak, D [1 ]
机构
[1] Tech Univ, Inst Math, PL-65246 Zielona Gora, Poland
关键词
dominating set; independent set; hereditary property of graphs; vertex partition;
D O I
10.1016/S0012-365X(98)00092-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce various concepts of P-domination, which generalize and unify different well-known kinds of domination in graphs. We generalize a result of Lovasz concerning the existence of a partition of a set of vertices of G into independent subsets and a result of Favaron concerning a property of S-k-dominating sets. Gallai-type equalities for the strong P-domination number are proved, which generalize Nieminen's result. Copyright (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [41] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    FILOMAT, 2017, 31 (20) : 6515 - 6528
  • [42] Double Roman Domination in Generalized Petersen Graphs
    Gao, Hong
    Huang, Jiahuan
    Yang, Yuansheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 885 - 894
  • [43] On the power domination number of the generalized Petersen graphs
    Guangjun Xu
    Liying Kang
    Journal of Combinatorial Optimization, 2011, 22 : 282 - 291
  • [44] Rainbow domination numbers of generalized Petersen graphs
    Gao, Zhipeng
    Lei, Hui
    Wang, Kui
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 382
  • [45] Double Roman Domination in Generalized Petersen Graphs
    Hong Gao
    Jiahuan Huang
    Yuansheng Yang
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 885 - 894
  • [46] On the power domination number of the generalized Petersen graphs
    Xu, Guangjun
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 282 - 291
  • [47] The exact domination number of the generalized Petersen graphs
    Yan, Hong
    Kang, Liying
    Xu, Guangjun
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2596 - 2607
  • [48] The Independence Number for the Generalized Petersen Graphs
    Fox, Joseph
    Gera, Ralucca
    Stanica, Pantelimon
    ARS COMBINATORIA, 2012, 103 : 439 - 451
  • [49] Independence number of generalized Petersen graphs
    Besharati, Nazli
    Ebrahimi, J. B.
    Azadi, A.
    ARS COMBINATORIA, 2016, 124 : 239 - 255
  • [50] Independence number of generalized products of graphs
    Mehta, H. S.
    Acharya, U. P.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)