Numerical study of an algorithm for air pollution sources identification with in situ and remote sensing measurement data

被引:1
|
作者
Penenko, A. V. [1 ,2 ]
Gochakov, A. V. [3 ]
Antokhin, P. N. [4 ]
机构
[1] RAS, SB, ICM&MG, Inst Computat Math & Math Geophys, Prospekt Akad Lavrentjeva 6, Novosibirsk 630090, Russia
[2] NSU, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Siberian Reg Sci Res Hydrometeorol Inst, Sovetskaya St 30, Novosibirsk 630099, Russia
[4] Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia
基金
俄罗斯基础研究基金会;
关键词
inverse source problem; atmospheric chemistry; remote sensing data; in situ measurements; Novosibirsk city; adjoint ensemble;
D O I
10.1117/12.2540901
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The results of the inverse source problem solution for an atmospheric chemistry transport and transformation model for in situ and remote sensing measurement data are compared. The algorithm based on the ensembles of the adjoint problem solutions is applied to solve the inverse problem. The solutions are compared in the Novosibirsk city inverse modeling scenario.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Characteristics of the Transport of a Typical Pollution Event in the Chengdu Area Based on Remote Sensing Data and Numerical Simulations
    Zhang, Ying
    Liu, Zhihong
    Lv, Xiaotong
    Zhang, Yang
    Qian, Jun
    ATMOSPHERE, 2016, 7 (10):
  • [42] POLLUTION IMPACT STUDY IN GABES GULF (TUNISIA) USING REMOTE-SENSING DATA
    GUILLAUMONT, B
    MUSTAPHA, SB
    BENMOUSSA, H
    ZAOUALI, J
    SOUSSI, N
    MAMMOU, AB
    CARIOU, C
    MARINE TECHNOLOGY SOCIETY JOURNAL, 1995, 29 (02) : 46 - 58
  • [43] Sand and dust storm sources identification: A remote sensing approach
    Rayegani, Behzad
    Barati, Susan
    Goshtasb, Hamid
    Gachpaz, Saba
    Ramezani, Javad
    Sarkheil, Hamid
    ECOLOGICAL INDICATORS, 2020, 112
  • [44] Using wavelet multi-resolution in the remote sensing of air pollution
    DeBrunner, V
    Chinnaswamy, A
    Zia, A
    DeBrunner, LS
    CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 607 - 611
  • [45] Remote sensing of air pollution dynamics over large European cities
    Kambezidis, HD
    Weidauer, D
    Ulbricht, M
    Melas, D
    FRESENIUS ENVIRONMENTAL BULLETIN, 1997, 6 (3-4): : 166 - 171
  • [46] Laser remote sensing and photoacoustic spectrometry applied in air pollution investigation
    Zelinger, Z
    Strizik, M
    Kubát, P
    Janour, Z
    Berger, P
    Cerny, A
    Engst, P
    OPTICS AND LASERS IN ENGINEERING, 2004, 42 (04) : 403 - 412
  • [47] Artificial neural network for the identification of unknown air pollution sources
    Reich, SL
    Gomez, DR
    Dawidowski, LE
    ATMOSPHERIC ENVIRONMENT, 1999, 33 (18) : 3045 - 3052
  • [48] CHEMICAL ELEMENT BALANCES AND IDENTIFICATION OF AIR-POLLUTION SOURCES
    FRIEDLANDER, SK
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1973, 7 (03) : 235 - 240
  • [49] Pollution signature of water quality using remote sensing data
    Lounis, Bahia
    Aissa, Aichouche Belhadj
    GLOBAL DEVELOPMENTS IN ENVIRONMENTAL EARTH OBSERVATION FROM SPACE, 2006, : 721 - +
  • [50] Remote sensing data for urban air quality assessment
    Zoran, M
    ROMOPTO 2000: SIXTH CONFERENCE ON OPTICS, 2000, 4430 : 729 - 735