Numerical study of an algorithm for air pollution sources identification with in situ and remote sensing measurement data

被引:1
|
作者
Penenko, A. V. [1 ,2 ]
Gochakov, A. V. [3 ]
Antokhin, P. N. [4 ]
机构
[1] RAS, SB, ICM&MG, Inst Computat Math & Math Geophys, Prospekt Akad Lavrentjeva 6, Novosibirsk 630090, Russia
[2] NSU, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Siberian Reg Sci Res Hydrometeorol Inst, Sovetskaya St 30, Novosibirsk 630099, Russia
[4] Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia
基金
俄罗斯基础研究基金会;
关键词
inverse source problem; atmospheric chemistry; remote sensing data; in situ measurements; Novosibirsk city; adjoint ensemble;
D O I
10.1117/12.2540901
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The results of the inverse source problem solution for an atmospheric chemistry transport and transformation model for in situ and remote sensing measurement data are compared. The algorithm based on the ensembles of the adjoint problem solutions is applied to solve the inverse problem. The solutions are compared in the Novosibirsk city inverse modeling scenario.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation
    Leifer, Ira
    Melton, Christopher
    Chatfield, Robert
    Cui, Xinguang
    Fischer, Marc L.
    Fladeland, Matthew
    Gore, Warren
    Hlavka, Dennis L.
    Iraci, Laura T.
    Marrero, Josette
    Ryoo, Ju-Mee
    Tanaka, Tomoaki
    Yates, Emma
    Yorks, John E.
    ATMOSPHERIC ENVIRONMENT, 2020, 224
  • [22] Segmentation on remote sensing imagery for atmospheric air pollution using divergent differential evolution algorithm
    Meera Ramadas
    Ajith Abraham
    Neural Computing and Applications, 2023, 35 : 3977 - 3990
  • [23] Segmentation on remote sensing imagery for atmospheric air pollution using divergent differential evolution algorithm
    Ramadas, Meera
    Abraham, Ajith
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 3977 - 3990
  • [24] Remote sensing identification of urban water pollution source types using hyperspectral data
    Cai, Xiaolan
    Wu, Luyao
    Li, Yunmei
    Lei, Shaohua
    Xu, Jie
    Lyu, Heng
    Li, Junda
    Wang, Huaijing
    Dong, Xianzhang
    Zhu, Yuxing
    Wang, Gaolun
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 459
  • [25] OIL POLLUTION OF THE SOUTHEASTERN BALTIC SEA BY SATELLITE REMOTE SENSING DATA AND IN-SITU MEASUREMENTS
    Bulycheva, Elena V.
    Krek, Aleksander V.
    Kostianoy, Andrey G.
    Semenov, Aleksander V.
    Joksimovich, Aleksandar
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2015, 16 (04) : 296 - 304
  • [26] Using ENN-1 to inspect the air pollution of automobile exhaust by remote sensing data
    Wang, Meng-Hui
    Chao, Kuei-Hsiang
    Lin, Keng-Hsien
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3000 - +
  • [27] Estimation of Air Pollution using Remote Sensing Technique in Coimbatore-A Case Study
    Geetha, P.
    Kokila, M.
    2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2015, : 794 - 798
  • [28] Measurement report: An assessment of the impact of a nationwide lockdown on air pollution - a remote sensing perspective over India
    Pathakoti, Mahesh
    Muppalla, Aarathi
    Hazra, Sayan
    Venkata, Mahalakshmi D.
    Lakshmi, Kanchana A.
    Sagar, Vijay K.
    Shekhar, Raja
    Jella, Srinivasulu
    Rama, Sesha Sai M., V
    Vijayasundaram, Uma
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (11) : 9047 - 9088
  • [30] LASER REMOTE-SENSING FOR AIR-POLLUTION MEASUREMENTS
    WERNER, C
    APPLIED OPTICS, 1975, 14 (04): : 796 - 769