Hyperspectral Image Compression Using an Online Learning Method

被引:1
|
作者
Ulku, Irem [1 ]
Toreyin, B. Ugur [1 ,2 ]
机构
[1] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey
[2] ODTU Yerleskesi, TUBITAK UZAY Sci & Tech Res Council Turkey, Space Technol Inst, TR-06800 Ankara, Turkey
关键词
Hyperspectral Compression; Sparse Coding; Hyperspectral Imagery; Basis Pursuit; Online Learning; CLASSIFICATION;
D O I
10.1117/12.2178133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] EXPONENTIAL FEATURE EXTRACTION AND LEARNING FOR PIXEL-WISE HYPERSPECTRAL IMAGE COMPRESSION
    Ivanovici, M.
    Marandskiy, K.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1775 - 1778
  • [42] Hyperspectral Image Compression and Reconstruction Based on Block-Sparse Dictionary Learning
    Yanwen Chong
    Weiling Zheng
    Haonan Li
    Zhixi Qiao
    Shaoming Pan
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1171 - 1186
  • [43] HIERARCHICAL COMPRESSION FOR HYPERSPECTRAL IMAGE STORAGE
    Gashnikov, M. V.
    Glumov, N. I.
    COMPUTER OPTICS, 2014, 38 (03) : 482 - 488
  • [44] AN OPERATIONAL APPROACH FOR HYPERSPECTRAL IMAGE COMPRESSION
    Du, Qian
    Ly, Nam
    Fowler, James E.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1357 - 1360
  • [45] Hyperspectral Image Compression and Reconstruction Based on Block-Sparse Dictionary Learning
    Chong, Yanwen
    Zheng, Weiling
    Li, Haonan
    Qiao, Zhixi
    Pan, Shaoming
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (07) : 1171 - 1186
  • [46] Hyperspectral Image Classification using Machine Learning Approaches
    Dasi, Syamala
    Peeka, Deekshitha
    Mohammed, Reshma Begum
    Kumar, B. L. N. Phaneendra
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 444 - 448
  • [47] Hyperspectral Image Classification Using Discriminative Dictionary Learning
    Zongze, Y.
    Hao, S.
    Kefeng, J.
    Huanxin, Z.
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [48] Hyperspectral Image Analysis using Deep Learning - a Review
    Petersson, Henrik
    Gustafsson, David
    Bergstrom, David
    2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2016,
  • [49] Lossless compression for hyperspectral image using deep recurrent neural networks
    Jiqiang Luo
    Jiaji Wu
    Shihui Zhao
    Lei Wang
    Tingfa Xu
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 2619 - 2629
  • [50] Hyperspectral image, video compression using sparse tucker tensor decomposition
    Das, Samiran
    IET IMAGE PROCESSING, 2021, 15 (04) : 964 - 973