Hyperspectral Image Compression Using an Online Learning Method

被引:1
|
作者
Ulku, Irem [1 ]
Toreyin, B. Ugur [1 ,2 ]
机构
[1] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey
[2] ODTU Yerleskesi, TUBITAK UZAY Sci & Tech Res Council Turkey, Space Technol Inst, TR-06800 Ankara, Turkey
关键词
Hyperspectral Compression; Sparse Coding; Hyperspectral Imagery; Basis Pursuit; Online Learning; CLASSIFICATION;
D O I
10.1117/12.2178133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multitemporal Hyperspectral Image Compression
    Zhu, Wei
    Du, Qian
    Fowler, James E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 416 - 420
  • [22] A Review on Hyperspectral Image Compression
    Sanjith, S.
    Ganesan, R.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1159 - 1163
  • [23] Hyperspectral Image Compression via Cross-Channel Contrastive Learning
    Guo, Yuanyuan
    Chong, Yanwen
    Pan, Shaoming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] HYPERSPECTRAL IMAGE DENOISING USING DICTIONARY LEARNING
    Dantas, Cassio F.
    Cohen, Jeremy E.
    Gribonval, Remi
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [25] Hyperspectral Image Compression Using Sampling and Implicit Neural Representations
    Rezasoltani, Shima
    Qureshi, Faisal Z.
    arXiv, 2023,
  • [26] Hyperspectral image compression using SPIHT based on DCT and DWT
    Wei, Haiping
    Zhao, Baojun
    He, Peikun
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [27] Lossless Hyperspectral Image Compression Using Intraband and Interband Predictors
    Mamatha, A. S.
    Singh, Vipula
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 332 - 337
  • [28] Sparse coding of hyperspectral imagery using online learning
    Ulku, Irem
    Toreyin, Behcet Ugur
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (04) : 959 - 966
  • [29] Sparse coding of hyperspectral imagery using online learning
    İrem Ülkü
    Behçet Uğur Töreyin
    Signal, Image and Video Processing, 2015, 9 : 959 - 966
  • [30] Robust subspace learning method for hyperspectral image classification
    Yuan, Haoliang
    Lai, Loi Lei
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (06)